Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
\(x^2-5x+6\)
\(=x^2-5x+\frac{25}{4}-\frac{1}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{5}{2}-\frac{1}{2}\right)\left(x-\frac{5}{2}+\frac{1}{2}\right)\)
\(=\left(x-3\right)\left(x-2\right)\)
\(x^2-5x+6 \)
= \(x^2-2x-3x+6\)
= \(\left(x^2-2x\right)-\left(3x-6\right)\)
= \(x\left(x-2\right)-3\left(x-2\right)\)
= \(\left(x-2\right)\left(x-3\right)\)
= x^4 + x^3 + 4x^3 + 4x^2 - 11x^2 - 11x -30x - 3
= x^3 ( x + 1) + 4x^2 ( x + 1)- 11x( x + 1) - 30 ( x+ 1)
= ( x + 1)(x^3 + 4x^2 - 11x - 30)
= ( x + 1) [ x^3 - 3x^2 + 7x^2 - 21x + 10x - 30]
= ( x + 1) [ x^2 ( x - 3) + 7x(x - 3) + 10 ( x- 3) ]
= ( x + 1 ) (x - 3 )(x^2 + 7x + 10)
= ( x + 1)(x - 3) [ x^2 + 2x + 5x + 10)
= ( x+ 1)(x-3) [ x(x+2) + 5(x+2) ]
=(x + 1)(x-3)(x+2)(x+5)
a/ x4 +5x3 +10x-4
=(x4- 4)+(5x3 + 10x)
=(x2+2) (x2-2) + 5x(x2 +2 )
=(x2+2)(x2 -2 +5x)
b/x5 - x4 +x3 -x2 +x-1
=x4(x-1)+x3(x-1)+(x-1)
=(x-1)(x4+x3+1)
a) co sai de ko
b)x3-2x2+4x2-8x+3x-6=x2(x-2)+4x(x-2)+3(x-2)=(x-2)(x2+4x+3)=(x-2)(x+3)(x+1)
c)x3-2x2+2x2-4x-3x+6=x2(x-2)+2x(x-2)-3(x-2)=(x-2)(x2+2x-3)=(x-2)(x+3)(x-1)
d)x3-3x2+x2-3x-2x+6=x2(x-3)+x(x-3)-2(x-3)=(x-3)(x2+x-2)=(x-3)(x+2)(x-1)
Đặt x2+5x+1=t chẳng hạn. Khi đó: (x2+5x+1)(x2+5x+3)-15=t.(t+2)-15=t2+2t-15. Giải phương trình bậc hai ta được: t=3 hoặc t=-5. Phương trình bậc hai có 2 nghiệm x1, x2 thì được viết dưới dạng nhân tử là: a(x-x1)(x-x2).
Vậy (x2+5x+1)(x2+5x+3)-15=(t-3)(t+5)=(x2+5x-2)(x2+5x+6). Có gì sai sót mong bạn bỏ qua cho =))
\(2x^2\left(x-1\right)+3x^2-3x-2x+2.\)
\(2x^2\left(x-1\right)+3x\left(x-1\right)-2\left(x-1\right)\)
\(\left(x-1\right)\left(2x^2+3x-2\right)\)
\(2\left(x-1\right)\left(x^2+\frac{3}{2}x-2\right)=2\left(x-1\right)\left\{\left(x^2+\frac{2x.3}{4}+\frac{9}{16}\right)-\left(2+\frac{9}{16}\right)\right\}\)
\(2\left(x-1\right)\left\{\left(x+\frac{3}{4}\right)^2-\left(2+\frac{9}{16}\right)\right\}=2\left(x-1\right)\left\{\left(x+\frac{3}{4}-2-\frac{9}{16}\right)\left(x+\frac{3}{4}+2+\frac{9}{16}\right)\right\}\)
\(=2x^3+4x^2-3x^2-6x+x+2\)
= \(2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\)
= \(\left(x+2\right)\left(2x^2-3x+1\right)\)
= \(\left(x+2\right)\left(2x^2-x-2x+1\right)\)
= \(\left(x+2\right)\left(2x\left(x-1\right)-\left(x-1\right)\right)\)
= \(\left(x+2\right)\left(x-1\right)\left(2x-1\right)\)
\(2x^2+5x+3=2x^2+2x+3x+3=2x\left(x+1\right)+3\left(x+1\right)=\left(2x+3\right)\left(x+1\right)\)
\(2x^2+5x+3=2x^2+2x+3x+3=\left(2x^2+2x\right)+\left(3x+3\right)=2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(2x+3\right)\)