Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)
b) \(4x^2-4x-3=4x^2+2x-6x-3=2x\left(2x+1\right)-3\left(2x+1\right)=\left(2x+1\right)\left(2x+3\right)\)
c) \(4x^4+81=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2=\left(2x^2-6x+9\right)\left(2x^2+6x-9\right)\)
d) \(x^2-6xy-25+9y^2=\left(x-3y\right)^2-25=\left(x-3y-5\right)\left(x-3y+5\right)\)
e) \(x^2-8y^2-2xy=x^2+2xy-4xy-8y^2=x\left(x+2y\right)-4y\left(x+2y\right)=\left(x+2y\right)\left(x-4y\right)\)
B = (x + 3)(x - 1)(x - 5)(x + 15) + 64x2
B = x4 + 12x3 - 58x2 - 180x + 225 + 64x2
B = x4 + 12x3 + 6x2 - 180x + 225
\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)=x^2\left(y-z\right)-y^2\left[\left(y-z\right)+\left(x-y\right)\right]+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(x^2-y^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x+y-y-z\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
a) 7x3 - 5x2
= x2( 7x - 5 )
b) x2 - 10x + 25
= x2 - 2.5.x + 52
= ( x - 5 )2
Ta có:\(7x^3-5x^2=x^2\left(7x-5\right)\)
\(x^2-10x+25=\left(x-5\right)^2\)
\(x^4+6x^3+11x^2+6x+1\)
\(=\left(x^4+6x^3+9x^2\right)+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Chúc bạn học tốt.
có 2 cách một là nhóm hạng tử hai là phương pháp hệ số bất định. tại nhiều bạn làm cách nhóm quá nên mình làm hệ số bất định nhé
x4 - 6x3 - 12x2 - 14x + 3
= (x2 + ax + b)(x2 + cx + d)
Tìm a, b, c, d thuộc Z
ta có (x2 + ax + b)(x2 + cx + d)
= x4 + cx3 + dx2 + ax3 + acx2 + axd + bx2 + bcx + bd
= x4 + (a + c)x3 + (b + d + ac)x2 + (ad+bc)x + bd
Đồng nhất hệ số ta có:
a + c = -6
b + d + ac = 12
ad + bc = -14
bd = 3
Nếu b = 1, d = 3, ta có \(\hept{\begin{cases}a+c=-6\\1+3+ac=-12\\3a+c=-14\end{cases}}\) => \(\hept{\begin{cases}a=-4\\c=-2\\4+\left(-4\right)\left(-2\right)=12\end{cases}}\)
=> a = -4, b=1, d=3, c = -2
vậy x4 - 6x3 + 12x2 - 14x + 3 = (x2 - 4x + 1)(x2 - 2x + 3)
x4 - x2 + 4x - 1
= x4 - ( x2 - 4x + 1 )
= (x2)2 - ( x - 1 )2
= ( x2 - x +1 ).( x2 +x -1 )
Chúc bạn học tốt nha !
thanks nhiều