Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^5-a^5-b^5-c^5\)
\(=5\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
a: \(M=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m+n\right)^2\left(m-n\right)\)
\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)
=0
b: \(N=n^3-3n^2-n\left(3-n\right)\)
\(=n^2\left(n-3\right)+n\left(n-3\right)\)
\(=n\left(n-3\right)\left(n+1\right)\)
\(=13\cdot10\cdot14=1820\)
cho đa thức: M=a(b+c)2+b(a2+c2)+c(a2+b2)
a, CMR nếu b+c=0 thì M=0
b, phân tích đa thức M thành nhân tử
a) \(M=a\left(b+c\right)^2+b\left(a^2+c^2\right)+c\left(a^2+b^2\right)\)
\(M=a\left(b+c\right)^2+a^2b+c^2b+a^2c+b^2c\)
\(M=a\left(b+c\right)^2+a^2\left(b+c\right)+bc\left(b+c\right)\)
\(M=a.0^2+a^2.0+bc.0=0\left(đpcm\right)\)
b)\(M=a\left(b+c\right)^2+a^2\left(b+c\right)+bc\left(b+c\right)\)
\(M=\left(b+c\right)\left(ab+ac+a^2+bc\right)\)
\(M=\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)
\(M=\left(b+c\right)\left(a+c\right)\left(a+b\right)\)
Câu hỏi của nguyễn khánh linh - Toán lớp 8 - Học toán với OnlineMath
a) 9x² - 25
= (3x)² - 5²
= (3x - 5)(3x + 5)
b) y³ + 6y² + 9y
= y(y² + 6y + 9)
= y(y² + 2.y.3 + 3²)
= y(y + 3)²
c) m² - n² - 2m + 1
= (m² - 2m + 1) - n²
= (m - 1)² - n
= (m - 1 - n)(m - 1 + n)
= (m - n - 1)(m + n - 1)