K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

a) 2xy2 - 6x2y + 4xy

= 2xy.(y - 3x + 2)

b) x2 - y2 - 5x + 5y

= (x+y).(x-y) - 5.(x-y)

= (x-y).(x+y-5)

c) x2 - 4y2 - 1 + 4y

= x2 - (4y2 - 4y + 1)

= x2 - [ (2y)2 - 2.2.y.1 + 12 ]

= x2 - (2y-1)2

= (x+2y-1).(x-2y+1)

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

10 tháng 7 2018

a) xy – 3x + 2y – 6

= (xy - 3x) + (2y - 6)

= x(y - 3) + 2(y - 3)

= (y - 3)(x + 2)

b) x2y + 4xy + 4y – y3

= y(x2 + 4x + 4 - y2)

= y[(x2 + 4x + 4) - y2]

= y[(x + 2)2 - y2]

= y(x + 2 + y)(x + 2 - y)

c) x2 + y2 + xz + yz + 2xy

= (x2 + 2xy + y2) + (xz + yz)

= (x + y)2 + z(x + y)

= (x + y)(x + y + z)

d) x3 + 3x2 – 3x – 1

= (x3 - 1) + (3x2 - 3x)

= (x - 1)(x2 + x + z) + 3x(x - 1)

= (x - 1)(x2 + 4x + 1)

10 tháng 7 2018

a ) 

\(xy-3x+2y-6\)

\(=\left(xy+2y\right)-3x-6\)

\(=y\left(x+2\right)-3\left(x+2\right)\)

\(=\left(y-3\right)\left(x+2\right)\)

b ) 

\(x^2y+4xy+4y-y^3\)

\(=y\left(x^2+4x+4-y^2\right)\)

\(=y\left[\left(x+2\right)^2-y^2\right]\)

\(=y\left(x+2-y\right)\left(x+2+y\right)\)

c ) 

\(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

26 tháng 7 2015

1, x2(x2+2x+1)=x2(x+1)2

2, 2(x2+2x+1-y2)=2(x+1-y)(x+1+y)

3, 16-(x2+2xy+y2)=(4-x-y)(4+x+y)

30 tháng 9 2018

\(x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

hk tốt

^^

12 tháng 9 2020

a) x2 - y2 + 4x + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

b) x2 - 2xy + y2 - 1

= ( x2 - 2xy + y2 ) - 1

= ( x - y )2 - 12

= ( x - y - 1 )( x - y + 1 )

c) x2 - 2xy + y2 - 4

= ( x2 - 2xy + y2 ) - 4

= ( x - y )2 - 22

= ( x - y - 2 )( x - y + 2 )

d) x2 - 2xy + y2 - z2

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - z2

= ( x - y - z )( x - y + z )

e) 25 - x2 + 4xy - 4y2

= 25 - ( x2 - 4xy + 4y2 )

= 52 - ( x - 2y )2

= ( 5 - x + 2y )( 5 + x - 2y )

f) x2 + y2 - 2xy - 4z2

= ( x2 - 2xy + y2 ) - 4z2

= ( x - y )2 - ( 2z )2

= ( x - y - 2z )( x - y + 2z )

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}