K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

Bài 1: 

a) + Nếu a/b > 1 thì a/b > b/b => a > b

+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)

b) + Nếu a/b < 1 thì a/b < b/b => a < b

+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)

Bài 2: 

Do \(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)

=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)

2 tháng 9 2016

bai2

vi a/b > c/d

=>ad/bd >cd/bd

và ad/bd , cd/bd có mẫu chung là bd

<=>ad>cd

25 tháng 12 2016

theo bài ra ta có:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}=\frac{a+b-a+b}{c+a-c+a}=\frac{2b}{2a}=\frac{b}{a}\)

=> \(\frac{a}{c}=\frac{b}{a}\)

=> a2= bc (đpcm)

vậy điều ngược lại hoàn toàn đúng

đúng k cho mk đi

2 tháng 8 2017

đúng nha !

k nhé
 

7 tháng 10 2016
Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/b+c+a=1

a/b=b/c=c/a=1

=>   a = b = c = 2013

Vậy b = 2013; c = 2013
 
 
7 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/
b+c+a=1

a/b=b/c=c/a=1

=> a = b = c = 2003

Vậy b = 2003; c = 2003

 
 
24 tháng 8 2017

+) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow ad< bc\)

( do b, d > 0 )

+) Ta có: \(ad< bc\)

\(\Rightarrow\dfrac{ad}{bd}< \dfrac{bc}{bd}\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\left(b,d>0\right)\)

24 tháng 8 2017

Để \(\dfrac{a}{b}< \dfrac{a+c}{b+d}\) thì \(a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow ab+ad< ab+bc\Leftrightarrow ad< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Để \(\dfrac{a+c}{b+d}< \dfrac{c}{d}\) thì \(\left(a+c\right).d< \left(b+d\right).c\Leftrightarrow ad+cd< bc+cd\Leftrightarrow ab< bc\Leftrightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Chúc Bạn Học Tốt !!!Đạt nhiều thành tích trong học tập

Xem lại đề nha bạn :\(\dfrac{a}{b},\dfrac{c}{d}\left(b,d>0\right)\) chứ

10 tháng 10 2018

Thay vì áp dụng t/c dãy tỉ số bằng nhau,ta áp dụng cách đặt k cho ngắn! =)

a) Chứng minh: Nếu \(a^2=bc\) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Đặt \(a^2=bc=k\Rightarrow\frac{a}{c}=\frac{b}{a}=k\Rightarrow\hept{\begin{cases}a=kc\\b=ka\end{cases}}\). Thay vào,ta có:

\(\frac{a+b}{a-b}=\frac{kc+ka}{kc-ka}=\frac{k\left(c+a\right)}{k\left(c-a\right)}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)

b)Bạn tham khảo bài của Đỗ Ngọc Hải ở đây nhé: Câu hỏi của ngô minh hoàng - Toán lớp 7 - Học toán với OnlineMath

18 tháng 1 2016

Em không biết làm ! T_T