K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

theo bài ra ta có:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}=\frac{a+b-a+b}{c+a-c+a}=\frac{2b}{2a}=\frac{b}{a}\)

=> \(\frac{a}{c}=\frac{b}{a}\)

=> a2= bc (đpcm)

vậy điều ngược lại hoàn toàn đúng

7 tháng 10 2016
Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/b+c+a=1

a/b=b/c=c/a=1

=>   a = b = c = 2013

Vậy b = 2013; c = 2013
 
 
7 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/
b+c+a=1

a/b=b/c=c/a=1

=> a = b = c = 2003

Vậy b = 2003; c = 2003

 
 
20 tháng 10 2016

a^2=cb

=> aa=cb

=>a/c=b/a=a+b/c+a=a-b/c-a

=>a+b/a-b=c+a/c-a

16 tháng 10 2016

Ta có \(a^2\)=\(bc\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}\)=\(\frac{b}{a}\)=\(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)

Từ \(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)

Vậy \(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)

19 tháng 7 2017

Khó hỉu

10 tháng 12 2021

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là tia phân giác