Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=8x^3-12x^2y+6xy^2-y^3=\left(2x\right)^3-3\times\left(2x\right)^2\times y+3\times2x\times y^2-y^3=\left(2x-y\right)^3\)
Thay x = 6 và y = - 8 vào N, ta có:
\(N=\left(2\times6-\left(-8\right)\right)^3=\left(12+8\right)^3=20^3=8000\)
Vậy giá tị của N tại x = 6 và y = - 8 là 8000
a, \(x^2+4y^2-4xy=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Thay \(x=18;y=4\) ta được:
\(\left(x-2y\right)^4=\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)
b, \(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
Thay \(x=6;y=-8\) ta được:
\(\left(2x-y\right)^3=\left(2.6+8\right)^3=\left(12+8\right)^3=20^3=8000\)
c, \(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)
\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-6ab^2\)
\(=2a^3\)
Thay \(a=1;b=2008\) ta được:
\(2a^3=2.1^3=2\)
mk nhầm đoạn cuối nhé, thêm mũ 3 vào sau khi thay số
a. \(1-2y+y^2=\left(1-y\right)^2\)
b. \(\left(x+1\right)^2-25=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
c. \(1-4x^2=\left(1+2x\right)\left(1-2x\right)\)
d. \(8-27x^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)
e. \(27+27x+9x^2+x^3=\left(x+3\right)^3\)
f, \(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
g, \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(\left(a\right)1-2y+y^2\)
\(\Leftrightarrow y^2-2y+1\)
\(\Leftrightarrow\left(y-1\right)^2\)
\(\left(b\right)\left(x+1\right)^2-25\)
\(\Leftrightarrow\left(x+1\right)^2-5^2\)
\(\Leftrightarrow\left(x-4\right)\left(x+6\right)\)
\(\left(c\right)1-4x^2\)
\(\Leftrightarrow1-\left(2x\right)^2\)
\(\Leftrightarrow\left(1-2x\right)\left(1+2x\right)\)
\(\left(d\right)8-27x^3\)
\(\Leftrightarrow2^3-\left(3x\right)^3\)
\(\Leftrightarrow\left(2-3x\right)\left(4+6x+9x^2\right)\)
\(\left(e\right)27+27x+9x^2+x^3\)
\(\Leftrightarrow\left(x+3\right)^3\)
\(\left(f\right)8x^3-12x^2y+6xy^2-y^3\)
\(\Leftrightarrow\left(2x\right)^3-12x^2y+6xy^2-y^3\)
\(\Leftrightarrow\left(2x-y\right)^3\)
\(\left(g\right)x^3+8y^3\)
\(\Leftrightarrow\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)
\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)
\(=xy^2-\dfrac{x}{3}+1\)
b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)
\(=2\left(x+y\right)^2\)
c) \(\dfrac{8x^3+27y^3}{2x+3y}\)
\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)
\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)
\(=4x^2-6xy+9y^2\)
d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)
\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)
\(=16x^2y-4y^3+2\)
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
\(N=8x^3-12x^2y+6xy^2-y^3\)\(=\left(2x\right)^3-3\left(2x\right)^2y+3\left(2x\right)y^2-y^3\)\(=\left(2x-y\right)^3\)
Thay x=6 y=-8 vào biểu thức đã thu gọn ta có \(\left(2.6+8\right)^3=26^3=17576\)