K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2014

a chia cho 7 dư 4 nên a = 7k + 4 (k\(\in\)N)

a chia cho 9 dư 6 nên a = 9q + 6 (q\(\in\)N)

\(\Rightarrow\)a + 3 = 7k + 7 chia hết cho 7 .

     a + 3 = 9q + 9 chia hết cho 9 .

Mà (7 ; 9) = 1 nên a + 3 chia hết cho 63

\(\Rightarrow\)a + 3 = 63m (m\(\in\)N)

a + 63 - 60 = 63m 

a = 63m - 63 + 60

a = 63(m - 1) + 60

Vậy a chia 63 dư 60

29 tháng 4 2017

Ta có :

a = 4k1 + 3             ( k1 \(\in\)N )

a = 9k2 + 5             ( k2 \(\in\)N )

\(\Rightarrow\)a + 13 \(⋮\)4 ; 9

\(\Rightarrow\)a + 13 \(\in\)BC ( 4 ; 9 )

BCNN ( 4 ; 9 ) = 36

\(\Rightarrow\)a + 13 = B ( 36 ) = 36k

\(\Rightarrow\)a + 13 = 36k                 ( k \(\in\)N )

\(\Rightarrow\)a = 36k - 13

\(\Rightarrow\)a = 36k - 36 + 23

\(\Rightarrow\)a = 36 . ( k - 1 ) + 23

vậy a chia 36 dư 23

25 tháng 11 2016

Do a chia 7 dư 4; a chia 9 dư 6 nên

\(\begin{cases}a-4⋮7\\a-6⋮9\end{cases}\)\(\Rightarrow\begin{cases}a-4+7⋮7\\a-6+9⋮9\end{cases}\)\(\Rightarrow\begin{cases}a+3⋮7\\a+3⋮9\end{cases}\)\(\Rightarrow a+3\in BC\left(7;9\right)\)

Mà (7;9)=1 nên \(a+3⋮63\)

Vậy số dư của a khi chia cho 63 là 63 - 3 = 60

9 tháng 4 2017

 vì a chia 7 dư 4 nên a+3 chia hết cho 7

vì a chia 9 dư 6 nên a+3 chia hết cho 9 

==> a+3 chia hết cho 7 và 9

mã 7 và 9 nguyên tố cùng nhau 

==>a+3 chia het cho 63 

==> a chia 63 du 60

9 tháng 4 2017

a = 123

nên a chia 63 dư 60

16 tháng 7 2018

Ta có :

Nếu a + 3 thì chia hết cho 7

Nếu a + 3 thì chia hết cho 9

 a + 3 thì chia hết cho cả 7 và 9

mã 7 và 9 nguyên tố cùng giống nhau

a + 3 chi hết cho 63

Khi a chia cho 63 thì sẽ dư 60 

k cho mình nha bạn Nguyễn Lê Cát Tường 10

16 tháng 7 2018

                    Gọi số dư khi chia a cho 63 là r  thì a = 63k + r (0 =< r < 63) (1) 
    Theo bài ra ta có: a chia 7 dư 4 => r chia 7 dư 4 (vì 63k chia hết cho 7) 
    Ta lại có:      a chia 9 dư 6 => r chia 9 dư 6 => r = 9m+6 (m nguyên, m thuộc [0;6]) 
r chia 7 dư 4 => r - 4 chia hết cho 7 hay 9m+2 chia hết cho 7 (2) 
Vì m thuộc [0;6] => (2) chỉ thỏa mãn khi m = 6 => r = 9.6 + 6 = 60. 
                                        Đáp số:60

17 tháng 7 2016

bai nay qua de 

17 tháng 7 2016

 Gọi số dư khi chia a cho 63 là r ---> a = 63k + r (0 =< r < 63) (1) 
Theo giả thiết a chia 7 dư 4 ---> r chia 7 dư 4 (vì 63k chia hết cho 7) 
Tương tự a chia 9 dư 6 ---> r chia 9 dư 6 ---> r = 9m+6 (m nguyên, m thuộc [0;6]) 
r chia 7 dư 4 ---> r - 4 chia hết cho 7 hay 9m+2 chia hết cho 7 (2) 
Vì m thuộc [0;6] ---> (2) chỉ thỏa mãn khi m = 6 ---> r = 9.6 + 6 = 60. 
Trả lời : 60.

29 tháng 6 2016

Do a chia 7 dư 4, a chia 9 dư 6

=> a - 4 chia hết cho 7, a - 6 chia hết cho 9

=> a - 4 + 7 chia hết cho 7, a - 6 + 9 chia hết cho 9

=> a + 3 chia hết cho 7, a + 3 chia hết cho 9

=> a + 3 thuộc BC(7,9)

Mà (7,9)=1 => a + 3 thuộc B(63)

=> a + 3 chia hết cho 63

=> a chia 63 dư 60

Vậy số dư khi a chia cho 63 là 60

Ủng hộ mk nha ^-^

29 tháng 6 2016

a chia 7 dư 4; a chia 9 dư 6 thì (a+3) sẽ chia hết cho cả 7 và 9. Khi đó, a+3 có dạng: a+3 = 7*9*k = 63*k

=> a = 63*k - 3 = 63*(k-1) + 60

Do đó a chia 63 dư 60.

29 tháng 7 2019

Đáp án cần chọn là: D

Vì a chia cho 7 dư 4⇒(a+3)⋮7

a chia cho 9 dư 6 ⇒(a+3)⋮9

Do đó (a+3)∈BC(7,9) mà BCNN(7,9)=63.

Do đó (a+3)⋮63⇒a chia cho 63 dư 60.

8 tháng 12 2021

câu D bạn nhé

AH
Akai Haruma
Giáo viên
26 tháng 6 2024

Lời giải:

Vì $a$ chia $9$ dư $6$ nên $a$ có dạng $9k+6$ với $k$ tự nhiên.

Vì $a$ chia $7$ dư $4$

$\Rightarrow a-4\vdots 7$

$\Rightarrow 9k+6-4\vdots 7$

$\Rightarrow 9k+2\vdots 7$

$\Rightarrow 9k+2+7=9k+9\vdots 7$

$\Rightarrow 9(k+1)\vdots 7$

$\Rightarrow k+1\vdots 7\Rightarrow k=7m-1$ với $m$ tự nhiên.

Khi đó:

$a=9k+6=9(7m-1)+6=63m-3=63(m-1)+60$

$\Rightarrow a$ chia $63$ dư $60$