Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích của mảnh vườn là: 30.20 = 600 ( m 2 )
Gọi chiều rộng của lối đi là x (0 < x < 20; m).
Sau khi làm lối đi:
Chiều rộng mảnh vườn còn lại: 20 – 2x (m)
Chiều dài mảnh vườn còn lại: 30 – 2x (m)
Vì diện tích trồng hoa bằng 84% diện tích mảnh đất nên ta có phương trình:
Vậy chiều rộng lối đi là 1m
Đáp án: A
Gọi chiều rộng của mảnh đất là x (m^2, >0)
Chiều dài của mảnh đất gấp 4 lần chiều rộng nên chiều dài mảnh đất là: 4x (m^2)
Diện tích mảnh đất là: 4x.x=4x^2 (m^2)
Giảm chiều rộng đi 2m được chiều rộng mới là: x-2 (m)
Tăng chiều dài lên gấp đôi đc chiều dai mới là: 2.4x=8x(m)
Diện tích của mảnh đất mới là; 8x(x-2) (m^2)
Theo bài ra ta có phương trình:
8x(x-2)-4x^2=20
<=> 8x^2-16x-4x^2=20
<=> 4x^2-16x-20=0
<=> x=5 (tm), x=-1 (loại)
Vậy chiều rộng là 5m. Chiều dài la 4.5=20 m
Câu 1:
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)
⇔\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)
Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm
Câu 1:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
hay a+b=14(1)
Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:
\(a^2+b^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)
Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m
Gọi chiều dài là x (52>x>0)m
chiều rộng là 104:2-x m
diện tích ban đầu là x(52-x) m2
vì tăng chiều rộng để mảnh đất trở thành hình vuông nên cạnh hình vuông là x m
diện tích hình vuông là x2
vì khi tăng chiều rộng thì diện tích tăng 240 m2 nên ta có pt
x(52-x)=x2-240
giải pt x=-4 ktm
x=30 tm
chiều dài của hcn là 30 m
chiều rộng của hcn là 52-30=22 m
diện tích hcn ban đầu là 30.22=660 m2
Gọi chiều dài mảnh vườn ban đầu là x(m)
thì chiều rộng mảnh vườn ban đầu là 52-x(m)
Diện tích ban đầu của mảnh vườn là x(52-x)(m2)
Diện tích lúc sau của mảnh vườn là x2 =x(52-x)+240(m2)
Đk: 0<x<104
Theo đề bài ta có
\(x^2=x\cdot\left(52-x\right)+240\)
⇔\(x^2=52x-x^2+240\)
⇔\(-2x^2+52x+240=0\)
⇔\(\left[{}\begin{matrix}x=30\left(n\right)\\x=-4\left(l\right)\end{matrix}\right.\)
Vậy diện tích ban đầu của mảnh vườn là \(30\cdot\left(52-30\right)=660\)(m2)
1,gọi chiều rộng mảnh vườn là x(m)
chiều dài mảnh vườn là x+3 (m) (x>0)
vì tăng chiều dài thêm 2m và giảm chiều rộng 1m thì diện tích mảnh vườn không đổi nên ta có pt:
(x-1)(x+5)=x(x+3)
⇔\(x^2+5x-x-5=x^2+3x\Leftrightarrow x^2-x^2+5x-x-3x=5\Leftrightarrow x=5\) (TM)
vậy chiều rộng mảnh vườn là 5m
chiều dài mảnh vườn là 5+3=8m
2,bán kính đáy của hình trụ là 1,2:2= 0,6 (m)
thể tích của hình trụ là : V = 3,14.(0,6)\(^2\).1,8=2 (m\(^3\))
vậy thể tích của hình trụ đó là 2m\(^3\)
khoanh hình tròn nha bn
giải ra mới k