Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Lập quy trình bấm phím liên tục
D=D+1:C=2B-3A+D2:A=B:B=C
Ấn CALC gán giá trị D=2; A=1; B=3
Nhấn "=" liên tục
Kết quả: x39 = 611543010
x40 = -4546632947
x41 = 10927893243 (cái này phải xử lý số tràn màn hình)
p/s: học lâu rồi ko nhớ lắm ko biết có đúng ko nữa :)
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
Ta có : \(\frac{1+x}{2}\ge\sqrt{x}\Rightarrow\left(\frac{1+x}{2}\right)^n\ge\sqrt{x^n}\) (1)
\(\frac{1+y}{2}\ge\sqrt{y}\Rightarrow\left(\frac{1+y}{2}\right)^n\ge\sqrt{y^n}\)(2)
\(\frac{1+z}{2}\ge\sqrt{z}\Rightarrow\left(\frac{1+z}{2}\right)^n\ge\sqrt{z^n}\)(3)
Từ 1,2,3 \(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\)
Áp dụng BĐT Cauchy cho 3 số ta có :
\(\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\ge3^3\sqrt{\sqrt{x^n}.\sqrt{y^n}.\sqrt{z^n}}=3\)
\(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)
Đẳng thức xảy ra <=> x = y = z = 1
Câu c làm tương tự, mẫu số nhân ra và nhóm lại theo dạng: x1+x2 và x1.x2
TOÁN HỌC
Toán lớp 2
Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 92.luyện tập (trang 96 sgk)
Bài 1: Số ?,Bài 2: Tính (theo mẫu),Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ? Bài 4: Viết số thích hợp vào ô trống (theo mẫu),Bài 5: Viết số thích hợp vào ô trống (theo mẫu):
- Lý thuyết, bài 1, bài 2, bài 3 tiết 93.bảng nhân 3 (trang 97sgk)
- Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 94.luyện tập (trang 98 sgk)
- Lý thuyết, bài 1, bài 2, bài 3 tiết 95. bảng nhân 4 (trang 99 sgk)
- Bài 1, bài 2, bài 3, bài 4 tiết 96.luyện tập (trang 100 sgk)
Xem thêm: CHƯƠNG V: PHÉP NHÂN VÀ PHÉP CHIA
Bài 1: Số ?
Bài 2: Tính (theo mẫu)
2cm x 3 = 6cm 2kg x 4 =
2cm x 5 = 2kg x 6 =
2dm x 8 = 2kg x 9 =
Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ?
Bài 4: Viết số thích hợp vào ô trống (theo mẫu):
Bài 5: Viết số thích hợp vào ô trống (theo mẫu):
Bài giải:
Bài 1:
Bài 2:
2cm x 3 = 6cm 2kg x 4 = 8kg
2cm x 5 = 10cm 2kg x 6 = 12kg
2dm x 8 = 16cm 2kg x 9 = 18kg
Bài 3:
Số bánh xe của 78 xe đạp là:
2 x 8 = 16 (bánh xe)
Đáp số: 16 bánh xe.
Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.
Bài 5:
Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.
Bài viết liên quan
Các bài khác cùng chuyên mục
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180,181 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 4 trang 177, 178 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4 trang 178,179 sgk toán lớp 2 (12/01)
- Bài 1, bài 2, bài 3, bài 4, bài 5 trang 181 sgk toán lớp 2 (12/01)
Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgVSXCQi
\(M=\frac{x_1^2+x_2^2+...+x_{2015}^2}{x_1\left(x_2+x_3+...+x_{2015}\right)}\ge\frac{x_1^2+\frac{\left(x_2+x_3+...+x_{2015}\right)^2}{2014}}{x_1\left(x_2+x_3+...+x_{2015}\right)}\)
\(=\frac{x_1}{x_2+x_3+...+x_{2015}}+\frac{x_2+x_3+...+x_{2015}}{2014x_1}\ge2\sqrt{\frac{1}{2014}}=\frac{2}{\sqrt{2014}}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x_2=x_3=...=x_{2015}\\\frac{x_1}{x_2+x_3+...+x_{2015}}=\frac{x_2+x_3+...+x_{2015}}{2014x_1}\end{cases}}\Leftrightarrow x_1=\sqrt{2014}x_2=...=\sqrt{2014}x_{2015}\)
1. Với D là biến đếm, ta có quy trình bấm phím liên tục:
D=D+1:A=DxB-C-D:C=B:B=A
CALC giá trị C=1; B=2; D=2 bấm "=" liên tục
Kết quả: x12 = 5245546; x13 = 67751587; x14 = 943276658
2. Dùng máy tính tính được x=27; y=11; z=19 => A=?
Hướng dẫn cụ thể cách bấm bài 2 được ko bạn