K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

a. ĐKXĐ : \(x\ne\frac{1}{2};\frac{5}{2};4;-\frac{3}{2};\frac{1\pm\sqrt{43}}{2}\)

 \(A=\left(\frac{2x-3}{4x^2-12x+5}+\frac{3x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right):\frac{21+2x-2x^2}{4x^2+4x-3}+\)

\(=\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}-\frac{3x-8}{\left(2x-5\right)\left(x-4\right)}-\frac{3}{2x-1}\right).\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)

\(=\frac{\left(2x-3\right)\left(x-4\right)-\left(3x-8\right)\left(2x-1\right)-3\left(2x-5\right)\left(x-4\right)}{\left(2x-1\right)\left(2x-5\right)\left(x-4\right)}.\frac{\left(2x-1\right)\left(2x+3\right)}{21+2x-2x^2}+1\)

\(=\frac{-10x^2+47x-56}{\left(2x-5\right)\left(x-4\right)}.\frac{2x+3}{-2x^2+2x+21}+1\) số to wa

28 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(D=\left(\frac{x}{x+2}+\frac{8x+8}{x^2+2x}-\frac{x+2}{x}\right):\left(\frac{x^2-x+3}{x^2+2x}+\frac{1}{x}\right)\)

\(\Leftrightarrow D=\left(\frac{x}{x+2}+\frac{8x+8}{x\left(x+2\right)}-\frac{x+2}{x}\right):\frac{x^2-x+3+x+2}{x\left(x+2\right)}\)

\(\Leftrightarrow D=\frac{x^2+8x+8-\left(x+2\right)^2}{x\left(x+2\right)}:\frac{x^2+5}{x\left(x+2\right)}\)

\(\Leftrightarrow D=\frac{\left(x^2+8x+8-x^2-4x-4\right)x\left(x+2\right)}{x\left(x+2\right)\left(x^2+5\right)}\)

\(\Leftrightarrow D=\frac{4x+4}{x^2+5}\)

Để \(D\inℤ\)

\(\Leftrightarrow4x+4⋮x^2+5\)

\(\Leftrightarrow4x^2+4x⋮x^2+5\)

\(\Leftrightarrow4\left(x^2+5\right)-16x⋮x^2+5\)

\(\Leftrightarrow16x⋮x^2+5\)

\(\Leftrightarrow256\left(x^2+5\right)-1280⋮x^2+5\)

\(\Leftrightarrow1280⋮x^2+5\)

\(\Leftrightarrow x^2+5\inƯ\left(1280\right)\)

Đoạn này bạn làm nốt nhé

28 tháng 2 2020

bài mik sai từ đoạn \(4x^2+4x⋮x^2+5\)

k tương đương đc với \(4\left(x^2+5\right)-16x⋮x^2+5\)nhaaa !! 

MIk rút gọn đc D thôi :)) Phần còn lại chắc cậu tự làm nha

13 tháng 7 2021

a) ĐKXĐ: \(x\ge0\)\(1-4x\ne\)0; \(2\sqrt{x}-1\ne0\)\(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\ne\)0

<=> \(x\ge0\); x \(\ne\)1/4

Ta có:  \(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(A=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x+2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}\right)\)

\(A=\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{6x+4x+2\sqrt{x}}\)

\(A=\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\)

b)Với x \(\ge\)0 và x \(\ne\)1/4

Ta có: A > A2 <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\left(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)^2\)

<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\left(1-\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)>0\)

<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10x+2\sqrt{x}-\sqrt{x}+1}{10x+2\sqrt{x}}>0\)

<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10+\sqrt{x}+1}{10x+2\sqrt{x}}>0\)

<=> \(\sqrt{x}-1>0\) <=> \(x>1\)

c) Với x\(\ge\)0 và x \(\ne\)1/4 (1)

Ta có: \(\left|A\right|>\frac{1}{4}\) <=> \(\orbr{\begin{cases}A>\frac{1}{4}\\A< -\frac{1}{4}\end{cases}}\)

TH1: \(A>\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\frac{1}{4}\)

<=> \(4\left(\sqrt{x}-1\right)>10x+2\sqrt{x}\)

<=> \(4\sqrt{x}-4>10x+2\sqrt{x}\)

<=> \(10x-2\sqrt{x}+4< 0\)(vô liia  vì \(10x-2\sqrt{x}+4>0\))

TH2: \(A< -\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}< -\frac{1}{4}\)

<=> \(4\left(\sqrt{x}-1\right)< -10x-2\sqrt{x}\)

<=> \(4\sqrt{x}-4+10x+2\sqrt{x}< 0\)

<=> \(10x+6\sqrt{x}-4< 0\)

<=> \(5x+3\sqrt{x}-2< 0\)

<=> \(\left(5\sqrt{x}-2\right)\left(\sqrt{x}+1\right)< 0\)

<=> \(x< \frac{4}{25}\) (2)

Từ (1) và (2) => \(0\le x< \frac{4}{25}\)

\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)

\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)

b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)

\(2\sqrt{x}-1>0\);\(4x>0\)

\(\Rightarrow x>0\)thì \(A>A^2\)

29 tháng 4 2020

1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4

a) rút gọn P

b) tìm x để P>1/3

c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên

2. Cho 2 biểu thức

A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25

a) tính giá trị của A khi x= 6-2√5

b) rút gọn B

c) tìm a để pt A-B=a có nghiệm

chúc bạn học tốt

Bài 1 :

\(a,P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2x-6}{x\left(x+6\right)}\)

\(=\frac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}=\frac{6\left(2x-6\right)}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}\)

\(=\frac{6}{x-6}\)

\(b,\)Với \(x\ne-6;x\ne6;x\ne0;x\ne3\)  Thì

\(P=1\Rightarrow\frac{6}{X-6}=1\Rightarrow6=x-6\Rightarrow x=12\)(Thỏa mãn \(ĐKXĐ\))

\(c,\)Ta có :

\(P< 0\Rightarrow\frac{6}{X-6}< 0\Rightarrow X-6< 0\Rightarrow X< 6\)

Do :  \(x\ne-6;x\ne6;x\ne0;x\ne3\)  ,Nên với \(x< 6\)và  \(x\ne-6;x\ne0;x\ne3\)  thì \(P< 0\)