K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

CH=2R =90

7 tháng 12 2021

xét jfnfjdmemekekd

22 tháng 2 2017

a, HS tự chứng minh

b, Gọi CH ∩ AB = K

Chứng minh được ∆MIC cân tại I

=>  I C M ^ = I M C ^

Tương tự:  O M A ^ = O A M ^

Chứng minh được  I M O ^ = 90 0 => ĐPCM

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

=>ΔAMB vuông tại M

Xét (O) có

ΔANB nội tiếp

AB là đường kính

=>ΔANB vuông tại N

Xét ΔCAB có

AN.BM là đường cao

AN cắt BM tại H

=>H là trực tâm

=>CH vuông góc AB

b:

Gọi giao của CH vơi AB là K

=>CH vuông góc AB tại K

góc OMI=góc OMH+góc IMH

=góc OBM+góc IHM

=góc OBM+góc BHK=90 độ

=>IM là tiếp tuyến của (O)

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

Xét (O) có

ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

Xét ΔCAB có 

AN,BM là các đường cao

AN cắt BM tại H

Do đó: H là trực tâm

=>CH vuông góc với AB

b: góc IMO=góc IMH+góc OMH

=90 độ-góc ACH+góc ABM

=90 độ

=>MI là tiếp tuyến của (O)

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

22 tháng 6 2017

T.T Bài không phải dễ mà là rất dễ 
Chịu khó mà nghĩ (((: