K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA
Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

mà CM=CA

và DM=DB

nên CD=CA+DB

a: Xét (O) có

CA,CM là tiếp tuyến

nênCA=CM và OC là phân giác của góc AOM(1)

mà OA=OM

nên OC là trung trực của AM

=>OC vuông góc với AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Xét (O)có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>MB vuông góc MA

=>MB//OC

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>OC vuông góc với OD

mà OM vuông góc DC

nên MC*MD=OM^2

=>AC*BD=R^2

c: Gọi H là trung điểm của CD

Xét hình thang ABDC có

H,O lần lượtlà trung điểm của CD,AB

nên HO là đường trung bình

=>HO//AC//BD

=>HO vuông góc với AB

=>AB là tiếp tuyến của (H)

a: Xét (O) co

CM,CA là tiếp tuyên

=>CM=CA 

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB

CD=CM+MD

=>CD=CA+BD

b: Xet ΔACN và ΔDBN có

góc NAC=góc NDB

góc ANC=góc DNB

=>ΔACN đồng dạng vơi ΔDBN

=>AC/BD=AN/DN

=>CN/MD=AN/ND

=>MN/AC