\(\text{a) }A=\dfrac{3}{-x^2+2x+4}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

a ) Để \(\dfrac{3}{-x^2+2x+4}\) đạt GTlN thì :

\(-x^2+2x+4\) phải đạt GTNN ( chắc ai cũng biết )

Ta có :

\(-x^2+2x+4\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(x-1\right)^2-5\)

Tới đây chắc bạn hỉu rồi nhỉ ?

11 tháng 11 2017

Mình cảm ơn bạn nhiều nhé.

27 tháng 11 2017

a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)

Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)

\((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)

\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)

\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4

Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

Bài 2: 

a: \(A=\dfrac{3}{2\left(x+1\right)}+\dfrac{10x}{2\left(x-1\right)\left(x+1\right)}-\dfrac{5}{2\left(x-1\right)}\)

\(=\dfrac{3x-3+10x-5x-5}{2\left(x-1\right)\left(x+1\right)}=\dfrac{8x-8}{2\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x+1}\)

b: Để P/2=3/x^2+2 thì \(\dfrac{4}{2x+2}=\dfrac{3}{x^2+2}\)

\(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{3}{x^2+2}\)

=>\(2x^2+4-3x-3=0\)

=>2x^2-3x+1=0

=>(x-1)(2x-1)=0

=>x=1/2(nhận) hoặc x=1(loại)

1: \(\Leftrightarrow\left(x+2\right)\left(x-2\right)+3\left(x+1\right)=3+x^2-x-2\)

\(\Leftrightarrow x^2-x+1=x^2-4+3x+3=x^2+3x-1\)

=>-4x=-2

hay x=1/2

2: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)

\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

\(\Leftrightarrow2x^2+23x+61=2x^2+2x+11\)

=>21x=-50

hay x=-50/21

3: \(\Leftrightarrow6\left(x-8\right)+\left(x+2\right)\left(x-5\right)=-18-\left(x-5\right)\left(x-8\right)\)

\(\Leftrightarrow6x-48+x^2-3x-10+18+x^2-13x+40=0\)

\(\Leftrightarrow2x^2-10x=0\)

=>2x(x-5)=0

=>x=0(nhận) hoặc x=5(loại)

19 tháng 6 2018

Bài 2:

\(A=\dfrac{5x^3+5x}{x^4-1}=\dfrac{5x\left(x^2+1\right)}{\left(x^2-1\right)\left(x^2+1\right)}\)

.....= \(\dfrac{5x}{x^2-1}\)

\(B=\dfrac{x^2+5x+6}{x^2+6x+9}=\dfrac{x^2+2x+3x+6}{\left(x+3\right)^2}\)

.....= \(\dfrac{x\left(x+2\right)+3\left(x+2\right)}{\left(x+3\right)^2}=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+3\right)^2}\)

.....= \(\dfrac{x+2}{x+3}\)

19 tháng 6 2018

Câu 1:

B = \(\dfrac{32x-8x^2+2x^3}{x^3+64}\)

....= \(\dfrac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\dfrac{2x}{x+4}\)

28 tháng 4 2018

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x+3\right)}\)

\(\Leftrightarrow\) \(\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)(đk: x \(\ne\)-1; x \(\ne\)3)

\(\Leftrightarrow\)\(\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\) x(x + 1) - x(x - 3) = 4x

\(\Leftrightarrow\) x2 + x - x2 + 3x = 4x

\(\Leftrightarrow\) 3x - 4x = 0

\(\Leftrightarrow\) -x = 0

\(\Leftrightarrow\) x = 0 (tmđk)

Vậy phương trên có n0 là x = 0

28 tháng 4 2018

sai rồi bạn ơi bạn tính thiếu x

x2 + X - x2 +3x = 4x

Câu 1: 

a: Để M là số nguyên thì \(2x^3-6x^2+x-3-5⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{4;2;8;-2\right\}\)

b: Để N là số nguyên thì \(3x^2+2x-3x-2+5⋮3x+2\)

\(\Leftrightarrow3x+2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{-\dfrac{1}{3};-1;1;-\dfrac{7}{3}\right\}\)