Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(E=\dfrac{\left(x-5\right)^2}{x\left(x-5\right)}=\dfrac{x-5}{x}\)
1: \(P=\left(\dfrac{2x}{x^2-9}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x^2-3x}\right)\)
\(=\left(\dfrac{2x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}\right):\left(\dfrac{2}{x}-\dfrac{x-1}{x\cdot\left(x-3\right)}\right)\)
\(=\dfrac{2x-x+3}{\left(x-3\right)\left(x+3\right)}:\dfrac{2\left(x-3\right)-x+1}{x\left(x-3\right)}\)
\(=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x\left(x-3\right)}{2x-6-x+1}\)
\(=\dfrac{x}{x-5}\)
\(C=\dfrac{-\left(x+1\right)+2\left(x-1\right)+5-x}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(=\dfrac{2}{1-2x}\)
\(C=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(\Rightarrow C=\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1+x\right)\left(1-x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=\dfrac{1+x+2\left(1-x\right)-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=\dfrac{1+x+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}.\dfrac{-\left(1-x\right)\left(x+1\right)}{1-2x}\)
\(\Rightarrow C=-2.\dfrac{-1}{1-2x}\)
\(\Rightarrow C=\dfrac{2}{1-2x}\)
\(a,\left(12x^2y^2-6xy^2\right):3xy+2y=6xy^2\left(2x-1\right):3xy+2y=2y\left(2x-1\right)+2y=4xy-2y+2y=4xy\)
\(b,\dfrac{4}{x+1} + \dfrac{8}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{4\left(x-1\right)+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4}{x-1}\)
\(c,\dfrac{1 }{x+1}- \dfrac{1}{x-1} +\dfrac{ 2x}{x^2-1} \)
\(=\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x-1-x-1+2x}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2x-2}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2}{x+1}\)
\(a,=4xy-2y+2y=4xy\\ b,\dfrac{4}{x+1}+\dfrac{8}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\\ c,\dfrac{1}{x+1}-\dfrac{1}{x-1}+\dfrac{2x}{x^2-1}=\dfrac{x-1-x-1+2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+1}\)
⇔ \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{4}{x^2+8x+12}=\dfrac{1}{8}\)
⇔ \(x^2+8x+12=32\)
⇔ \(x^2+8x-20=0\)
⇔ \(\left(x-2\right)\left(x+10\right)=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
\(a,=\dfrac{x^2-10x+25-x^2+50}{x\left(x-5\right)}=\dfrac{-10x+75}{x\left(x-5\right)}\\ b,=\dfrac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x+3}\)