Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\sqrt{\frac{-12}{x-5}}\) xác định khi \(\frac{-12}{x-5}\) \(\ge\) 0
→x-5<0→x<5
3. xác định khi x-2>0 →x>2
5.xác định khi \(\frac{4x-5}{x+2}\ge0\)và x\(\ne\)-2
→\(\left[\begin{array}{nghiempt}\hept{\begin{cases}4x-5< 0\\x-3< 0\end{array}\right.\\\hept{\begin{cases}4x-5\ge0\\x-3>0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{5}{4}\\x< 3\end{array}\right.\\\hept{\begin{cases}x\ge\frac{5}{4}\\x>3\end{array}\right.\end{array}\right.}\)
\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)
Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).
Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).
Do đó ta có đpcm.
k/ \(\sqrt{8+\sqrt{60}}-\sqrt{\dfrac{2}{\sqrt{15}+4}}=\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)
l/ \(\sqrt{\dfrac{3\sqrt{5}-1}{2\sqrt{5}+3}}=\sqrt{\dfrac{\left(3\sqrt{5}-1\right)\left(2\sqrt{5}-3\right)}{11}}=\sqrt{\dfrac{33-11\sqrt{5}}{11}}=\sqrt{3-\sqrt{5}}\)
\(\sqrt{\dfrac{\sqrt{5}+11}{7-2\sqrt{5}}}=\sqrt{\dfrac{\left(\sqrt{5}+11\right)\left(7+2\sqrt{5}\right)}{29}}=\sqrt{\dfrac{87+29\sqrt{5}}{29}}=\sqrt{3+\sqrt{5}}\)
\(\sqrt{\dfrac{3\sqrt{5}-1}{2\sqrt{5}+3}}-\sqrt{\dfrac{\sqrt{5}+11}{7-2\sqrt{5}}}=\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\dfrac{-2\sqrt{5}}{\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}}\)
a) Xét tứ giác ADHE có: \(\widehat{ADH}=90\)
\(\widehat{DAE}=90\)
\(\widehat{AEH}=90\)
=> Tứ giác ADHE là hình chữ nhật
=>DE=AH
Áp dụng hệ thức liên quan tới đường cao ta có:
\(AH^2=HB\cdot HC=2\cdot8=16\)
=>AH=4
=>DE=AH=4
b)Gọi O là giao điểm của AH và DE
Vì ADHE là hình chữ nhật
=>OD=OA
=>ΔOAD cân tại O
=>\(\widehat{OAD}=\widehat{ODA}\)
Xét ΔABH vuông tại H(gt)
=>\(\widehat{BAH}+\widehat{B}=90\) (1)
Xét ΔABC vuông tại A(gt)
=>\(\widehat{B}+\widehat{C}=90\) (2)
Từ (1) (2) suy ra: \(\widehat{BAH}=\widehat{C}\)
Mà: \(\widehat{OAD}=\widehat{ODA}\) (cmt)
=> \(\widehat{ADE}=\widehat{ACB}\)
Xét ΔADE và ΔACB có
\(\widehat{DAE}=\widehat{CAB}=90\left(gt\right)\)
\(\widehat{ADE}=\widehat{ACB}\left(cmt\right)\)
=>ΔADE~ΔACB
1:
AC=căn 5^2-3^2=4cm
BH=AB^2/BC=1,8cm
CH=5-1,8=3,2cm
AH=3*4/5=2,4cm
2:
ΔCBA vuông tại B có tan 40=BC/BA
=>BC/10=tan40
=>BC=8,39(m)
ΔCBD vuông tại B có tan D=BC/BD
=>BD=8,39/tan35=11,98(m)