K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2019

Đáp án C.

20 tháng 7 2017

Cách 1 :

Phương trình a z 2  + bz + c = 0 có Δ = b 2  - 4ac

+ TH1 : Δ < 0, phương trình có hai nghiệm phức Giải bài 4 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 4 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

+ TH2: Δ ≥ 0, theo định lý Vi-et ta có:

Giải bài 4 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Cách 2 :

 

 

Giải bài 4 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

30 tháng 10 2017

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3 π /2

31 tháng 5 2019

Đáp án: B.

Các phương trình còn lại có nhiều hơn một nghiệm:

(x - 5)( x 2  - x - 12) = 0 có các nghiệm x = 5, 4, -3.

sin 2 x  - 5sinx + 4 = 0 ⇔ sinx = 1, có vô số nghiệm

sinx - cosx + 1 = 0 có các nghiệm x = 0, x = 3π/2.

25 tháng 3 2016

a) Gọi \(z_1,z_2\) là các nghiệm của phương trình với \(\left|z_1\right|=1\). Từ \(z_2=\frac{c}{a}.\frac{1}{z_1}\) kéo theo \(\left|z_2\right|=\left|\frac{c}{a}\right|.\frac{1}{\left|z_1\right|}=1\)

vì \(z_1+z_2=-\frac{b}{a},\left|a\right|=\left|b\right|\), ta có \(\left|z_1+z_2\right|^2=1\)

Hệ thức tương đương với 

\(\left(z_1+z_2\right)\left(\overline{z_1}+\overline{z_2}\right)=1\) tức là \(\left(z_1+z_2\right)\left(\frac{1}{z_1}+\frac{1}{z_2}\right)=1\)

\(\left(z_1+z_2\right)^2=z_1z_2\)

hay  \(\left(-\frac{b}{a}\right)^2=\frac{c}{a}\Rightarrow b^2=ac\)

25 tháng 3 2016

b) Theo câu a) \(b^2=ac,c^2=ab\). Nhân các hệ thức được \(b^2c^2=a^2bc\Rightarrow a^2=bc\)

Do đó \(a^2+b^2+c^2=ab+bc+ca\)

Hệ tương đương  với :

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tức là 

\(\left(a-b\right)^2+\left(b-c\right)^2+2\left(a-b\right)\left(b-c\right)+\left(c-a\right)^2=2\left(a-b\right)\left(b-c\right)\)

Kéo theo 

\(\left(a-c\right)^2=\left(a-b\right)\left(b-c\right)\)

Lấy giá trị tuyệt đối, được \(\beta^2=\gamma\alpha\)

Ở đây \(\alpha=\left|b-c\right|,\beta=\left|c-a\right|,\gamma=\left|a-b\right|\)

Tương tự được :

\(\alpha^2=\beta\gamma,\gamma^2=\alpha\beta,\)

Cộng các hệ thức, được :

\(\alpha^2+\beta^2+\gamma^2=\alpha\beta+\beta\gamma+\gamma\alpha\)

Tức là (\(\left(\alpha-\beta\right)^2+\left(\beta-\gamma\right)^2+\left(\gamma-\beta\right)^2=0\)

Do đó : \(\beta=\alpha=\gamma\)

NV
21 tháng 4 2023

Đặt \(z_1=x+yi\Rightarrow z_2=x-yi\)

\(\Rightarrow z_1z_2=x^2+y^2\)

\(\left|z_1^2\right|+\left|z_2^2\right|=10\Leftrightarrow\left|\left(x+yi\right)^2\right|+\left|\left(x-yi\right)^2\right|=10\)

\(\Leftrightarrow\left|x^2-y^2+2xyi\right|+\left|x^2-y^2-2xyi\right|=10\)

\(\Leftrightarrow\sqrt{\left(x^2-y^2\right)^2+4x^2y^2}+\sqrt{\left(x^2-y^2\right)^2+4x^2y^2}=10\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+4x^2y^2=25\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=25\)

\(\Leftrightarrow x^2+y^2=5\)

NV
30 tháng 3 2021

Toàn bộ nghiệm của 3 pt này đều là nghiệm thực, không có nghiệm phức nào

a. \(x^2-3x-2=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{17}}{2}\end{matrix}\right.\)

b. \(x^4-5x^2+6=0\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x=\pm\sqrt{3}\end{matrix}\right.\)

c. \(-x^2+4x+5=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)

31 tháng 1 2019

Chọn đáp án C

31 tháng 12 2018

Chọn A.

Ta có: z1 = 3 + i; z2 = 1 - 2i là 2 nghiệm của phương trình đã cho và z1 + z2 = 4 - i (1)

Theo Viet, ta có:

Từ (1) và (2) suy ra: