K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

a) Vì 5+4 > 6 nên ba độ dài 5 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của một tam giác.

b) Vì 3 + 6 = 9 < 10 nên ba độ dài 3 cm, 6 cm, 10 cm không thể là độ dài ba cạnh của một tam giác

19 tháng 9 2023

Theo bất đẳng thức tam giác:

a) Vì 2 + 3 = 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 3 cm, 5 cm không thể là độ dài ba cạnh của một tam giác

b) Vì 3+4 > 6 nên bộ ba đoạn thẳng có độ dài 3 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của một tam giác

* Cách vẽ: + Vẽ độ dài cạnh AB = 6cm.

+ Dùng compa, vẽ cung tròn tâm A bán kính 3 cm, cung tròn tâm B bán kính 4cm. Hai cung tròn này cắt nhau tại C.

Ta được tam giác ABC cần vẽ.

c) Vì 2+4 > 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 4 cm, 5 cm có thể là độ dài ba cạnh của một tam giác

* Cách vẽ: + Vẽ độ dài cạnh AB = 5cm.

+ Dùng compa, vẽ cung tròn tâm A bán kính 2 cm, cung tròn tâm B bán kính 4cm. Hai cung tròn này cắt nhau tại C.

Ta được tam giác ABC cần vẽ.

19 tháng 4 2017

a) Ta có 3 – 2 < 6 < 3 + 2 bất đẳng thức này sai nên ba độ dài 2cm, 3cm, 6cm không là ba cạnh của tam giác.

b) Vì 6 = 2 + 4 nên ba độ dài là 2cm, 4cm, 6cm không là 3 cạnh của một tam giác

c) 4 – 3 < 6 < 4 + 3 bất đẳng thức đúng nên ba độ dài 3cm, 4cm, 6cm là 3 cạnh của một tam giác.

27 tháng 3 2018

a) Nhận xét: 2cm + 3cm = 5cm < 6cm nên bộ ba đoạn thẳng dài 2cm, 3cm, 6cm không phải là bộ ba cạnh của một tam giác.

b) Nhận xét: 2cm + 4cm = 6cm = 6cm nên bộ ba đoạn thẳng dài 2cm, 4cm, 6cm không phải là bộ ba cạnh của một tam giác.

c) Nhận xét: 3cm + 4cm = 7cm > 6cm nên bộ ba đoạn thẳng dài 3cm, 4cm, 6cm là bộ ba cạnh của một tam giác.

25 tháng 9 2018

Chọn D

19 tháng 11 2016

Giải:
Gọi 3 cạnh của tam giác ABC lần lượt là a, b, c ( a > b > c > 0 )

Ta có: \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}\) và a - c = 10

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a-c}{5-3}=\frac{10}{2}=5\)

+) \(\frac{a}{5}=5\Rightarrow a=25\)

+) \(\frac{b}{4}=5\Rightarrow b=20\)

+) \(\frac{c}{3}=5\Rightarrow c=15\)

Vậy 3 cạnh của tam giác lần lượt là 15 cm, 20 cm và 25 cm

 

19 tháng 11 2016

Gọi độ dài các cạnh của tam giác lần lượt là a , b , c (theo thứ tự nhỏ đến lớn)

Theo đề bài , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và c + 10 = a + b

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{c+10}{7}\)

=> \(\frac{c+10}{7}=\frac{c}{5}\)

=> 5(c + 10) = 7c

=> 5c + 50 = 7c

=> 50 = 2c

=> c = 25

=> a + b = 25 + 10 = 35

Áp dụng tính chất dãy tỉ số , ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{a+b}{3+4}=\frac{35}{7}=5\)

=> a = 3.5 = 15

b = 4.5 = 20

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Ta thấy:

\(\begin{array}{l}8 - 5 = 3 = 3\end{array}\)

Vậy bộ ba số đo độ dài 8 cm, 5 cm, 3 cm không thể là độ dài ba cạnh của một tam giác.

b) Ta thấy:

\(\begin{array}{l}12 - 6 = 6\end{array}\)

Vậy bộ ba số đo độ dài 12 cm, 6 cm, 6 cm không thể là độ dài ba cạnh của một tam giác.

c) Ta thấy: \(15 - 9 = 6 > 4\).

Vậy bộ ba số đo độ dài 15 cm, 9 cm, 4 cm không thể là độ dài ba cạnh của một tam giác. 

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cmBài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.a)     Chứng minh: ΔABD = ΔACE. Bài 5: Cho ∆ABC...
Đọc tiếp

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.

Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?

a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cm

Bài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.

a)     Chứng minh: ΔABD = ΔACE.

 

Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.

a)     Chứng minh ∆DBA = ∆DBN. So sánh DA và DN.

b)    Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC

c)     Chứng minh ∆BMC cân.

 

Bài 10: Cho ΔABC vuông tại A, M là trung điểm của BC

a)     Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB.

b)    Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng ΔMAC = ΔMBD

c)     Chứng minh AB // CD.                                   

d)    Chứng minh:

Bài 11: Cho tam giác ABC có BA < BC và

a)Trên BC lấy điểm M sao cho BM = BA. Chứng minh tam giác ABM đều.

b)Tia phân giác góc B cắt AC tại D. Chứng minh: ΔBAD = ΔBMD.

c)Tia MD cắt tia BA tại H, chứng minh ΔDHC cân.

Bài 12 : Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:

a) BD = CE.                                                        

b) Tam giác GDE cân.

c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, G, M thẳng hàng.

d) Cho AB = 8 cm; MB = 5 cm. Tính độ dài AM?

1

2: BC=căn 6^2+8^2=10cm

3:

a: 5cm; 12cm; 9cm

5+12>9; 5+9>12; 12+9>5

=>Bộ ba số này thỏa mãn độ dài 3 cạnh của 1 tam giác

b: 12+16>20; 12+20>16; 20+16>12

=>Bộ ba số này thỏa mãn độ dài 3 cạnh của 1 tam giác

4:

Xét ΔABD và ΔACE có

AB=AC

góc BAD chung

AD=AE
=>ΔABD=ΔACE

10:

a: AB=căn 10^2-6^2=8cm

b: Xét ΔMAC và ΔMDB có

MA=MD

góc AMC=góc DMB

MC=MB

=>ΔMAC=ΔMDB

c: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hbh

=>AB//CD
 

5 tháng 3 2020

ta có 4^2+7^2 =65 ko=8^2

suy ra tam giác đó ko vuông

5 tháng 3 2020

Gọi tam giác đó là \(\Delta\)ABC.AB = 4 cm

                                              AC= 7cm

                                              BC = 8cm

    Ta có \(AB^2+AC^2\)=16+49=65 cm

        Lại có \(BC^2\)=64

             Mà 65\(\ne\)64

\(\Rightarrow\)\(AB^2+AC^2\ne BC^2\)

\(\Delta\)ABC \(K^o\)phải là tam giác vuông (định lí Pi-ta-go)    (đpcm)

hok tốt

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Ta có: 2,5 + 3,4 = 5,9 cm < 6 cm nên không có tam giác nào với độ dài ba cạnh là 2,5 cm; 3,4 cm và 6 cm.

23 tháng 9 2019

a) Có, vì 12 < 5 + 10.

b) Không, vì 1 + 2 = 3

c) Có, vì 9 < 6 + 8.