Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tam giác BMN và DPQ có:
\(BM=DP\)
\(\widehat{MDN}=\widehat{PDQ}\)
\(BN=DQ\)
\(\Rightarrow\) tam giác BMN = DPQ(c.g.c)
\(\Rightarrow MN=PQ\) (1)
Chứng minh tương tự, ta được: tam giác AQM = CNP\(\Rightarrow QM=NP\)(2)
Từ (1) và (2) \(\Rightarrow\) MNPQ là hình bình hành
a: ta có: GN và GQ là hai tia đối nhau
=>G nằm giữa N và Q
mà GN=GQ
nên G là trung điểm của NQ
Ta có: GP và GM là hai tia đối nhau
=>G nằm giữa P và M
mà GP=GM
nên G là trung điểm của PM
Xét tứ giác MNPQ có
G là trung điểm chung của MP và NQ
=>MNPQ là hình bình hành
b: Ta có: ΔABC cân tại A
=>AB=AC(1)
Ta có: M là trung điểm của AC
=>\(AM=CM=\dfrac{AC}{2}\left(2\right)\)
Ta có: N là trung điểm của AB
=>\(AN=BN=\dfrac{AB}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=CM=AN=BN
Xét ΔAMB và ΔANC có
AM=AN
\(\widehat{BAM}\) chung
AB=AC
Do đó: ΔAMB=ΔANC
=>BM=CN
Xét ΔABC có
BM,CN là các đường trung tuyến
BM cắt CN tại G
Do đó: G là trọng tâm của ΔABC
=>\(MG=\dfrac{1}{3}BM;NG=\dfrac{1}{3}CN\)
mà BM=CN
nên MG=NG
G là trung điểm của QN
nên QN=2NG
G là trung điểm của MP
nên MP=2MQ
Ta có: MG=NG
mà QN=2NG và MP=2MQ
nên QN=MP
Hình bình hành MNPQ có NQ=MP
nên MNPQ là hình chữ nhật