Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét tứ giác MNPQ có
G là trung điểm của đường chéo MP(gt)
G là trung điểm của đường chéo NQ(gt)
Do đó: MNPQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b)
Xét ΔABC có
BM là đường trung tuyến ứng với cạnh AC(gt)
CN là đường trung tuyến ứng với cạnh AB(gt)
BM cắt CN tại G(gt)
Do đó: G là trọng tâm của ΔABC(Định lí ba đường trung tuyến của tam giác)
Suy ra: \(MG=\dfrac{1}{3}MB;BG=\dfrac{2}{3}MB;NG=\dfrac{1}{3}NC;CG=\dfrac{2}{3}NC\)(1)
Ta có: G là trung điểm của MP(gt)
nên MG=GP
mà \(MG=\dfrac{1}{3}MB\)
nên \(MG=GP=\dfrac{1}{3}MB\)
Ta có: MG+GP=MP(G nằm giữa M và P)
nên \(MP=\dfrac{1}{3}MB+\dfrac{1}{3}MB=\dfrac{2}{3}MB\)(1)
Ta có: G là trung điểm của NQ(gt)
nên \(GN=GQ=\dfrac{1}{3}NC\)
Ta có: NG+GQ=NQ(G là trung điểm của NQ)
nên \(NQ=\dfrac{1}{3}NC+\dfrac{1}{3}NC=\dfrac{2}{3}NC\)(2)
Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)
\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)
mà AB=AC(ΔBAC cân tại A)
nên AN=NB=AM=MC
Xét ΔAMB và ΔANC có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}\) chung
AM=AN(cmt)
Do đó: ΔAMB=ΔANC(c-g-c)
Suy ra: BM=CN(hai cạnh tương ứng)(3)
Từ (1), (2) và (3) suy ra NQ=MP
Hình bình hành MNPQ có NQ=MP(cmt)
nên MNPQ là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a) Vì BM là đường trung tuyến AC (gt)=>AM=CM
Vì CN là đường trung tuyến AB(gt)=>AN=BN
=>MN là đường trung bình tam giác ABC
=>MN//BC, MN=1/2 BC (điều1)
Ta lại có:
G là trung điểm MP(vì P là điểm đối xứng vs M qua G
=>PG=GM
VÌ GM=1/2 BG
PG=GM
=>BP=PG
Làm tương tự:GQ=CQ
Ta có:BP=PG(cmt)
GQ=CQ (cmt)
=>PQ là đường trung bình tam giác BGC
=>PQ//BC, PQ=1/2 BC (điều 2)
Từ 1 và 2 điều trên =>MN=PQ(cug=1/2 BC)
MN//PQ(cug //BC)
=>MNPQ lầ hình bình hành (t/c hbh )
b)Nếu tam giác ABC cân tại A thì AG vuông góc BC
=>PN vuông góc vs BC.Mặt khác PQ//BC
=>PN vuông góc vs PQ mà MNPQ là hình bình hành(cmt)
lại có 1 góc =90độ=>MNPQ là hình chữ nhật
Bài 1:
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
DO dó: ED là đường trung bình
=>ED//BC và ED=BC/2
Xét ΔGBC có
M,N lần lượt là trug điểm của GB và GC
nênMN là đường trung bình
=>MN//BC và MN=BC/2
Xét ΔGMN có
I là trung điểm của GM
K là trung điểm của GN
Do đó: IK là đường trung bình
=>IK//MN và IK=MN/2
=>IK//ED và IK=BC/4
Xét tứ giác IKDE có DE//IK
nên IKDE là hình thang
Xét ΔACE và ΔABD có
AC=AB
góc A chung
AE=AD
Do đó: ΔACE=ΔABD
Suy ra: CE=BD
Xét ΔEBC và ΔDCB có
EB=DC
EC=BD
BC chung
Do đó: ΔEBC=ΔDCB
Suy ra: góc GBC=góc GCB
hay ΔGBC cân tại G
=>GB=GC
=>GD=GE
GI=1/4GB
GK=1/4GC
mà GB=GC
nên GI=GK
=>ID=EK
=>EDKI là hình thang cân
b: DE=BC/2=5cm
IK=1/4BC=2,5cm
=>DE+IK=7,5cm
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a: ta có: GN và GQ là hai tia đối nhau
=>G nằm giữa N và Q
mà GN=GQ
nên G là trung điểm của NQ
Ta có: GP và GM là hai tia đối nhau
=>G nằm giữa P và M
mà GP=GM
nên G là trung điểm của PM
Xét tứ giác MNPQ có
G là trung điểm chung của MP và NQ
=>MNPQ là hình bình hành
b: Ta có: ΔABC cân tại A
=>AB=AC(1)
Ta có: M là trung điểm của AC
=>\(AM=CM=\dfrac{AC}{2}\left(2\right)\)
Ta có: N là trung điểm của AB
=>\(AN=BN=\dfrac{AB}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=CM=AN=BN
Xét ΔAMB và ΔANC có
AM=AN
\(\widehat{BAM}\) chung
AB=AC
Do đó: ΔAMB=ΔANC
=>BM=CN
Xét ΔABC có
BM,CN là các đường trung tuyến
BM cắt CN tại G
Do đó: G là trọng tâm của ΔABC
=>\(MG=\dfrac{1}{3}BM;NG=\dfrac{1}{3}CN\)
mà BM=CN
nên MG=NG
G là trung điểm của QN
nên QN=2NG
G là trung điểm của MP
nên MP=2MQ
Ta có: MG=NG
mà QN=2NG và MP=2MQ
nên QN=MP
Hình bình hành MNPQ có NQ=MP
nên MNPQ là hình chữ nhật