Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = 23.3.52.2.13=24.25.26
1320=23.3.5.11=(2.5).11.(22.3)=10.11.12
a) \(2^4.3.5^2.13\)
\(=2^3.3.5^2.2.13\)
\(=24.25.26\)
b) \(1320=2^3.3.5.11=\left(2.5\right).11.\left(2^2.3\right)\)
\(=10.11.12\)
a)n+4 chia hết cho n+1
n+4=n+1+3
=>n+1+3 chia hết cho n+1
=>n+1 chia het cho n+1
=>3 chia hết cho n+1
mà 3 chia hết cho 1;3
n+1 n 1 0 3 2
vay n=0;2
d. 513:1254
= 513 : ( 53)4
= 513 : 512
= 51
Chúc bạn học tốt!!! Các câu sau tương tự thôi
a ) A = 82 x 324 = ( 23 )2 x ( 25 )4 = 23.2 x 25.4 = 26 x 220 = 226
b ) B = 273 x 94 x 243 = ( 33 )3 x ( 32 )4 x 35 = 33.3 x 32.4 x 35 = 39 x 38 x 35 = 322
c ) C = 643 : 163 = ( 43 )3 : ( 42 )3 = 43.3 : 42.3 = 49 : 46 = 43
d ) D = 513 : 1254 = 513 : ( 53 )4 = 513 : 53.4 = 513 : 512 = 51
a,
Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:
a + a + 1 + a + 2 = 3a + 3
Mà 3a \(⋮3;3⋮3\)
=> 3a + 3 \(⋮3\)
Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3
b,
Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư
a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2
Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2
c,
Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:
a[a + 1]
*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2
* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2
Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2
d,
Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:
a[a+1][a+2]
* cm a[a+1][a+2] chia hết cho 2
** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2
Vậy a[a+1][a+2] chia hết cho 2
* cm a[a+1][a+2] chia hết cho 3
Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2
** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3
Vậy a[a+1][a+2] chia hết cho 3
Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3
e,
2 + 22 + 23 + 24 + ... + 260
= 2[1 + 2 + 22 + 23 + 24 + ... + 260] \(⋮2\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]
= 14 + 24.14 +... + 256.14
= 7 . 2[1 + 24 + ... + 256] \(⋮7\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 5.6 + 25.5.6 + ... + 255.5.6
= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)
2 + 22 + 23 + 24 + ... + 260
= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24]
= 30 + 25.30 + ... + 255.30
= 15.2 + 25.15.2 + ... + 255.15.2
= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)
Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15
g,
102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]
= 999.....9999 [2004 chữ số 9]
Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]
=> 102005 - 1 chia hết cho 9
Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]
=> 102005 - 1 chia hết cho 3
Vậy 102005 - 1 chia hết cho 3 và 9
h,
Ta có:
102005 + 2 = 102005 - 1 + 3
Mà 102005 - 1 chia hết cho 3 [chứng minh trên]
Lại có: 3 chia hết cho 3
=> 102005 + 2 chia hết cho 3
Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:
1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9
Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]
1) a. A={0; 1; 2; 3; 4;...; 14; 15}
b Ta có A B= {7; 8; 9;...; 12; 13}
Vậy B là tập hợp con của A
2) Cách ghi số trên là cách ghi số trong hệ thập phân.
Số trên có số chục là 3
3) Số phần tử của tập hợp P là: (46-2):2+1= 23(phần tử)
4)Cách 1:
13.(24+43)= 13.24+13.43
=312+559
=871
Cách 2:
13.(24+43)=13.67
= 871
5) Trong phép chia có dư, số dư lúc nào cũng nhỏ hơn số chia.
6)a. 5.5.5.5.5.5.5.5= 58
b. 6.6.6.6.36= 6.6.6.6.62 =66
7) a. 73.72.72=73+2+2= 77
b.98:93:94= 98-3-4= 91= 9
Học tốt nha!!
a) \(2^4.3.5^2.13=\left(2^3.3\right).5^2.\left(2.13\right)=24.25.26\)
b) \(1320=10.132=10.11.12\)
a) Xem lại ạ
b) \(1320=10\cdot11\cdot12\)