Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2-8x+16x=x^2+8x=x\left(x+8\right)\)
b: \(4x^2-8xyz+4y^2=4\left(x^2-2xyz+y^2\right)\)
c: \(ab^2+\dfrac{1}{4}a^2b^4+1=\left(\dfrac{1}{2}ab^2+1\right)^2\)
a) 6x4 - 9x3 = 3x3(2x - 3)
b) 5y10 + 15y6 = 5y6(y4 + 3)
c) x2 - 6xy + 9y2 = x2 - 6xy + (3y)2 = (x - 3y)2
e) x3 - 64 = x3 - 43 = (x - 4)(x2 + 4x + 16)
f) 125x3 + y6 = (5x)3 + (y2)3 = (5x + y2)(25x2 + 5y2 + y4)
g) 0,125(a + 1)3 - 1 = [0,5(a + 1)]3 - 13 = (0,5a + 0,5)3 - 13 = (0,5a + 0,5 - 1)[(0,5a + 0,5)2 + (0,5a + 0,5) + 1) = (0,5a - 0,5)(0,25a^2 + 0,5 a + 0,25 + 0,5a + 0,5 + 1) = (0,5a - 0,5)(0,25a2 + 1,75 + a)
h) 3x2 - 12y2 = 3(x2 - 4y2) = 3[x2 - (2y)2 ] = 3(x - 2y)(x + 2y)
\(a,=ab\left(a+3\right)\\ b,=\left(x-1\right)^2\\ c,=x\left[\left(x-3\right)^2-y^2\right]=x\left(x-y-3\right)\left(x+y-3\right)\)
a, \(4abc-8ab^2c=4abc\left(1-2b\right)\)
b, \(x^2\left(2a-1\right)+x\left(1-2a\right)=x^2\left(2a-1\right)-x\left(2a-1\right)\)
\(=x\left(x-1\right)\left(2a-1\right)\)
c, \(9a^4\left(a-2\right)+a^2\left(a-2\right)=a^2\left(9a^2+1\right)\left(a-2\right)\)
d, \(\left(a-4\right)\left(2a-1\right)-8a+4=\left(a-4\right)\left(2a-1\right)-4\left(2a-1\right)\)
\(=\left(a-8\right)\left(2a-1\right)\)
a) `4abc-8ab^2c=4abc(1-2b)`
b) `x^2 (2a-1)+x(1-2a) = x^2 (2a-1) -x(2a-1) = (2a-1)(x^2-x)=x(2a-1)(x-1)`
c) `9a^4 (a-2) +a^2 (a-2) = (a-2)(9a^4+a^2)=a^2 (a-2)(9a^2+1)`
d) `(a-4)(2a-1)-8a+4=(a-4)(2a-1)-4(2a-1)=(2a-1)(a-8)`
Bài 1:
e: Ta có: \(x\left(y-x\right)^2-x^2+2xy-y^2\)
\(=x\left(x-y\right)^2-\left(x-y\right)^2\)
\(=\left(x-y\right)^2\cdot\left(x-1\right)\)
Bài 2:
a: Ta có: \(M=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m+n\right)^2\cdot\left(m-n\right)\)
\(=\left(-2017+2017\right)^2\cdot\left(-2017-2017\right)\)
=0
Bài 1:
a: \(4a^2-6b=2\left(2a^2-3b\right)\)
b: \(m^3n-2m^2n^2-mn\)
\(=mn\left(m^2-2mn-1\right)\)
Bài 1:
a) \(4a^2-6b=2\left(a^2-3b\right)\)
b) \(=mn\left(m^2-2mn-1\right)\)
Bài 2:
a) \(=4\left(u-2\right)^2+v\left(u-2\right)=\left(u-2\right)\left(4u-8+v\right)\)
b) \(=a\left(a-b\right)^3-b\left(a-b\right)^2-b^2\left(a-b\right)=\left(a-b\right)\left[a\left(a-b\right)^2-b\left(a-b\right)-b^2\right]=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab+b^2-b^2\right)=\left(a-b\right)\left(a^3-2a^2b+ab^2-ab\right)\)