Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.\(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
=\(a\left(b^2-2bc+c^2-a^2\right)+b\left(a^2+2ac+c^2-b^2\right)+c\left(a^2-2ab+b^2-c^2\right)\)
=\(a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(a+c\right)^2-b^2\right]+=c\left[\left(a-b^2\right)-c^2\right]\)
=\(a\left(c-b+a\right)\left(a+b-c\right)+b\left(a+c-b\right)\left(a+b+c\right)+c\left(a-b+c\right)\left(a-b-c\right)\)
=\(\left(a+c-b\right)\left[a\left(c-b+a\right)+b\left(a+b+c\right)+c\left(a-b-c\right)\right]\)
=\(\left(a+c-b\right)\left(b+a-c\right)\left(c+b-a\right)\)
b) Ta có: \(a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)
\(=ab^2-ac^2+bc^2-ba^2+ca^2-cb^2\)
\(=\left(ab^2-cb^2\right)+\left(ca^2-c^2a\right)+\left(bc^2-ba^2\right)\)
\(=b^2\left(a-c\right)+ca\left(a-c\right)+b\left(c^2-a^2\right)\)
\(=\left(a-c\right)\left(b^2+ca\right)-b\left(a-c\right)\left(a+c\right)\)
\(=\left(a-c\right)\left(b^2+ca-ba-bc\right)\)
\(=\left(a-c\right)\left[b\left(b-a\right)+c\left(a-b\right)\right]\)
\(=\left(a-c\right)\left[b\left(b-a\right)-c\left(b-a\right)\right]\)
\(=\left(a-c\right)\left(b-a\right)\left(b-c\right)\)