Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^3.\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
cảm ơn bạn nhiều, không biết còn cách không? Mong nhận đượ giúp đỡ!
a) x2 - 16 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 16
= ( x - 2y )2 - 42
= ( x - 2y - 4 )( x - 2y + 4 )
b) x5 - x4 + x3 - x2
= x2( x3 - x2 + x - 1 )
= x2[ x2( x - 1 ) + ( x - 1 ) ]
= x2( x - 1 )( x2 + 1 )
c) x( x + 4 )( x + 6 )( x + 10 ) + 128 < mình nghĩ là nên sửa đề như này :]>
= [ x( x + 10 ) ][ ( x + 4 )( x + 6 ) ] + 128
= ( x2 + 10x )( x2 + 10x + 24 ) + 128
Đặt t = x2 + 10x
bthuc <=> t( t + 24 ) + 128
= t2 + 24t + 128
= t2 + 16t + 8t + 128
= t( t + 16 ) + 8( t + 16 )
= ( t + 16 )( t + 8 )
= ( x2 + 10x + 16 )( x2 + 10x + 8 )
= ( x2 + 2x + 8x + 16 )( x2 + 10x + 8 )
= [ x( x + 2 ) + 8( x + 2 ) ]( x2 + 10x + 8 )
= ( x + 2 )( x + 8 )( x2 + 10x + 8 )
cảm ơn bạn câu c mình chép nhầm nó là 128 đó
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
-x^4 + x^3 - 16x + 1 là đáp án cuối cùng bạn nhé, còn lại bạn làm đúng rồi đấy
1) \(25x^4-10x^2y+y^2\)
\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)
\(\Leftrightarrow\left(5x^2+y\right)^2\)
2) \(x^4+2x^3-4x-4\)
\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)
3) \(x^4+x^2+1\)
\(\Leftrightarrow x^4+x^2-x+x+1\)
\(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4) \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)
\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)
5) \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)
\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)
\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\)
\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)
\(\left(4-x\right)^2+\left(x-4\right)\left(x-5\right)-4\left(x-5\right)^2+1\)
= \(16-4x+x^2+x^2-5x-4x+20-4\left(x^2-5x+25\right)+1\)
= \(37-13x+2x^2-4x^2+20x+100\)
= \(137+7x-2x^2\)
\(=\left(x-4\right)^2+\left(x-4\right)\left(x-5\right)-\left(2\left(x-5\right)\right)^2+1\)
\(=\left(x-4\right)\left(2x-9\right)-\left(\left(2x-10\right)^2-1\right)\)
\(=\left(x-4\right)\left(2x-9\right)-\left(2x-11\right)\left(2x-9\right)\)
\(=\left(2x-9\right)\left(x-4-2x+11\right)=\left(2x-9\right)\left(7-x\right)\)