Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)4x^2-25+\left(2x+7\right).\left(5.2x\right)\)
\(=\left(2x\right)^2-5^2-\left(2x+7\right).\left(2x-5\right)\)
\(=\left(2x.5\right)\left(2x+5\right).\left(2x+7\right)\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x+5-2x+7\right)\)
\(=\left(2x-5\right).12\)
\(2)3x+4-x^2-4x\)
\(=3(x+4)-\left(x+4\right)\)
\(=\left(3-x\right)\left(x+4\right)\)
\(3)5x^2-2y^2-10x+10y\)
\(=5\left(x^2-y^2\right)-10\left(x-4\right)\)
\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)[5(x+y)-10]\)
Còn lại bn lm nốt nha!
Ta có: \(5x^2-10x+2x-4\)
\(=5x\left(x-2\right)+2\left(x-2\right)\)
=(x-2)(5x+2)
\(4x^4+4x^3+5x^2+2x+1\)
\(=4x^4+2x^3+2x^2+2x^3+x^2+2x^2+x+1\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
[(10x+4).(2x+1)].[(4x-2).(5x+7)] + 17 = (20x + 18x + 4)(20x + 18x - 14) + 17.
Đến đây ta đặt 20x + 18x - 5 = t, ta được: (t - 9)(t + 9) + 17 = 0 \(\Leftrightarrow\) t2 - 81 + 17 = 0
Đến đây bạn tự làm tiếp nhé!