Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3a^2c^2+bd+3abc+acd=\left(3a^2c^2+3abc\right)+\left(bd+acd\right)=3ac\left(ac+b\right)+d\left(b+ac\right)\\ =\left(3ac+d\right)\left(ac+b\right)\)
\(B=a^2c-a^2d-b^2d+b^2c=a^2\left(c-d\right)-b^2\left(c-d\right)=\left(a^2-b^2\right)\left(c-d\right)\\=\left(a-b\right)\left(a+b\right)\left(c-d\right)\)
\(C=8x^2+4xy-2ax-ay=\left(8x^2+4xy\right)-\left(2ax+ay\right)=4x\left(2x+y\right)-a\left(2x+y\right)\\ =\left(4x-a\right)\left(2x+y\right)\)
\(E=3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2\right)-12c^2=3\left(a-b\right)^2-12c^2\\ =3\left[\left(a-b\right)^2-4c^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
a) 2x^2 - 2xy - 5x +5y
= (2x^2 - 2xy ) - ( 5x- 5 y)
=2x(x-y) - 5(x-y)
=(x- y). (2x- 5)
b)8x2 +4xy-2ax-ay
=(8x2 +4xy) -(2ax+ay)
=4x(2x+y)-a(2x+y)
=(2x+y).(4x-a)
c)=x(x2 -4x +4)
=x(x-2)2
d)=16- (x2 -2xy +y^2)
=4^2-(x-y)^2
=(4-x+y).(4+x-y)
các câu còn lại tg tự
chúc bn hok tốt
a) \(2x^2-2xy-5x+5y\)
\(=y\left(5-2x\right)-x\left(5-2x\right)\)
\(=\left(5-2x\right)\left(y-x\right).\)
b) \(8x^2+4xy-2ax-ay\)
\(=2x\left(4x-a\right)+y\left(4x-a\right)\)
\(=\left(2x+y\right)\left(4x-a\right)\)
c) \(x^3-4x^2+4x\)
\(=x\left(x^2-4x+4\right)\)
\(=x\left(x-2\right)^2\)
d) \(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-4^2\right)\)
\(=-\left[\left(x-y\right)^2-4^2\right]\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
e) \(x^2-y^2-2yz-z^2\)
\(=x^2-\left(y^2+2yz+z^2\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=\left(x-y+z\right)\left(x+y+z\right)\)
g) \(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4c^2\right)\)
\(=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]\)
\(=3\left(a-b-2c\right)\left(a-b+2c\right)\)
a) Biểu thức không phân tích được thành nhân tử. Bạn xem có nhầm dấu không.
b)
\(8x^2+4xy-2ax-ay=(8x^2+4xy)-(2ax+ay)\)
\(=4x(2x+y)-a(2x+y)=(4x-a)(2x+y)\)
c) Biểu thức không phân tích được thành nhân tử.
d)
\(3a^2-6ab+3b^2-12c^2\)
\(=(3a^2-6ab+3b^2)-12c^2=3(a^2-2ab+b^2)-12c^2\)
\(=3(a-b)^2-3.(2c)^2=3[(a-b)^2-(2c)^2]=3(a-b-2c)(a-b+2c)\)
e) Biểu thức không phân tích được thành nhân tử.
f) Sửa:
\(x^2+y^2+2xy-m^2+2mn-n^2\)
\(=(x^2+2xy+y^2)-(m^2-2mn+n^2)\)
\(=(x+y)^2-(m-n)^2=(x+y-m+n)(x+y+m-n)\)
g) Biểu thức không phân tích được thành nhân tử. Nếu muốn phải thay $x^2$ thành $4x^2$ hoặc $y^2$ thành $4y^2$
h)
\(x^2-xy-3x+3y=(x^2-xy)-(3x-3y)=x(x-y)-3(x-y)=(x-3)(x-y)\)
k)
\(x^4-4x^3+8x^2+8x=x(x^3-4x^2+8x+8)\)
l)
\(16x^3y+\frac{1}{4}yz^3=\frac{1}{4}y(64x^3+z^3)=\frac{1}{4}y[(4x)^3+z^3]\)
\(=\frac{1}{4}y(4x+z)(16x^2-4xz+z^2)\)
\(x^3+3x^2+6x+4=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)\)
\(=\left(x+1\right)x^2+2x.\left(x+1\right)+4.\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
a) \(x^3+3x^2+6x+4\)
\(=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+4\right)\)
b) \(3a^2c^2+bd+3abc+acd\)
\(=\left(3a^2c^2+acd\right)+\left(3abc+bd\right)\)
\(=ac\left(3ac+d\right)+b\left(3ac+d\right)\)
\(=\left(ac+b\right)\left(d+3ac\right)\)
a) x3 - 4x2 + 4x
= x(x2 - 4x + 4)
= x(x - 2)2
b) 2xy - x2 - y2 + 16
= 16 -x2 + 2xy - y2
= 16 - (x2 - 2xy + y2)
= 42 - (x - y)2
= [4 - (x - y)].(4 + x - y)
= (4 - x + y)(4 + x - y)
c) x2 - y2 - 2yz - z2
= x2 - (y2 + 2yz + z2)
= x2 - (y + z)2
= [x -(y + z)].(x + y +z)
=(x - y - z)(x + y + z)
d) 3a2 - 6ab + 3b2 - 12c2
= 3(a2 - 2ab + b2 - 4c2)
= 3[(a2 - 2ab + b2) - (2c)2]
= 3[(a - b)2 - (2c)2]
= 3(a - b - c)(a - b + c)
con D bạn chép sai đề bài rồi, phải là +3b2 chứ. tích cho mik nha, ko thì lần sau mik ko giúp đâu ihihihi.....!!!!!!!!!
i. Ta có: (x+y)^3 - (x-y)^3=[(x+y)-(x-y)][(x+y)^2 + (x+y)(x-y) + (x-y)^2]
=2y(x^2 +2xy +y^2 +x^2 -xy +xy -y^2 +x^2 -2xy +y^2)
=2y(3x^2 +y^2)