Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-xz-yz+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b) \(x^4+2011x^2+2010x+2011\)
\(=x^4+2010x^2+x^2+2010x+2010+1\)
\(=\left(x^4+x^2+1\right)+\left(2010x^2+2010x+2010\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2011\right)\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
a ) \(3x^3-7x^2+17x-5\)
\(=\left(3x^2-x^2\right)-\left(6x^2-2x\right)+\left(15x-5\right)\)
\(=x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(=\left(x^2-2x+5\right)\left(3x-1\right)\)
b \(x^4+2011x^2+2010x+2011\)
\(=x^4-x+2011x^2+2011x+2011\)
\(=x\left(x^3-1\right)+2011\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2011\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2011\right)\)
x4+2011x2+2010x+2011
=(x4+x3+x2)+(2011x2+2011x+2011)-(x3+x2+x)
=x2(x2+x+1)+2011(x2+x+1)-x(x2+x+1)
=(x2+x+1)(x2+2011-x)
x4+2011x2+2010x+2011=x4-x+2011x2+2011x+2011
=x(x3-1)+2011(x2+x+1)
=x(x- 1)(x2+x+1)+2011(x2+x+1)
=(x2+x+1)[x(x-1)+2011]
=(x2+x+1)(x2-x+2011)
x4+2012x2+2011x+2012
=(x4-x)+(2012x2+2012x+2012)
=x(x3-1)+2012(x2+x+1)
=x(x-1) (x2+x+1) + 2012 (x2+x+1)
=(x2+x+1) [x(x-1)+2012]
=(x2+x+1) (x2-x+2012)
a) (x + y + z)3 - x3 - y3 - z3
= (x + y + z)3 - z3 - (x3 + y3)
= (x + y + z - z)[(x + y + z)2 + (x + y + z).z + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + z2 + 2xy + 2yz + 2zx + 2xz + 2yz + z2 + z2) - (x + y)(x2 - xy + y2)
= (x + y)(x2 + y2 + 3z2 + 2xy + 4yz + 4zx) - (x + y)(x2 - xy + y2)
= (x + y)(3z2 + 3xy + 5yz + 4zx)
b) Sửa đề x4 + 2010x2 + 2009x + 2010
= (x4 + x2 + 1) + (2009x2 + 2009x + 2009)
= (x4 + 2x2 + 1 - x2) + 2009(x2 + x + 1)
= [(x2 + 1)2 - x2] + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 1) + 2009(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 2010)
\(x^4+2010x^2+2009x+2010\)
\(=x^4-x+\left(2010x^2+2010x+2010\right)\)
\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2010\right]=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
x4+2010x2+2009x+2010
=x4-x+2010x2+2010x+2010
=x.(x3-1)+2010.(x2+x+1)
=x.(x-1)(x2+x+1)+2010.(x2+x+1)
=(x2+x+1)(x2-x+2010)
(x+y+z)3-x3-y3-z3=(x+y+z-x)[(x+y+z)2+(x+y+z).x+x2]-(y+z)(y2-yz+z2)
=(y+z)(x2+y2+z2+2xy+2yz+2zx+x2+xy+zx+x2)-(y+z)(y2-yz+z2)
=(y+z)(3x2+y2+z2+3xy+2yz+3zx)-(y+z)(y2-yz+z2)
=(y+z)(3x2+y2+z2+3xy+2yz+3zx-y2+yz-z2)
=(y+z)(3x2+3yz+3xy+3zx)
=3.(y+z)(x2+xy+yz+zx)
=3.(y+z)[x.(x+y)+z.(x+y)
=3.(y+z)(x+y)(x+z)
1) \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left[\left(x^2+2x\right)+\left(x+2\right)\right]\)
\(=x\left(x+3\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
2) \(x^4+2012x^2+2011x+2012\)
\(=\left(x^4-x\right)+\left(2012x^2+2012x+2012\right)\)
\(=x\left(x^3-1\right)+2012\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2012\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2012\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)
=(x4−x3+2011x2)+
(x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)
=(x2+x+1)(x2−x+2011)
=(x4−x3+2011x2)+(x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)
=(x2+x+1)(x2−x+2011)
x3−x2+2011x)+(x2−x+2011)
=x2(x2−x+2011)+x(x2−x+2011)+(x2−x+2011)=(x2+x+1)(x2−x+2011)
seo gần nhau hía:>