K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

x4+2011x2+2010x+2011

=(x4+x3+x2)+(2011x2+2011x+2011)-(x3+x2+x)

=x2(x2+x+1)+2011(x2+x+1)-x(x2+x+1)

=(x2+x+1)(x2+2011-x)

8 tháng 6 2015

x4+2011x2+2010x+2011=x4-x+2011x2+2011x+2011

                                    =x(x3-1)+2011(x2+x+1)

                                    =x(x- 1)(x2+x+1)+2011(x2+x+1)

                                   =(x2+x+1)[x(x-1)+2011]

                                    =(x2+x+1)(x2-x+2011)

26 tháng 11 2015

\(x^4+2010x^2+2009x+2010\)

\(=x^4-x+\left(2010x^2+2010x+2010\right)\)

\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2010\right]=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)

 

14 tháng 7 2019

1) \(x^3+x^2+4\)

\(=\left(x^3-x^2+2x\right)+\left(2x^2-2x+4\right)\)

\(=x\left(x^2-x+2\right)+2\left(x^2-x+2\right)\)

\(=\left(x^2-x+2\right)\left(x+2\right)\)

14 tháng 7 2019

2) \(x^3-2x-4\)

\(=\left(x^3+2x^2+2x\right)-\left(2x^2+4x+4\right)\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x^2+2x+2\right)\left(x-2\right)\)

15 tháng 7 2015

 

x8 + x4 + 1

=x8+2x4+1-x4

=(x4+1)2-x4

=(x4-x2+1)(x4+x2+1)

=(x4-x2+1)(x4+2x2+1-x2)

=(x4-x2+1)[(x2+1)2-x2]

=(x4-x2+1)(x2-x+1)(x2+x+1)

x8 + x4 + 1

= ( x)2 + 2x4 + 1 - x4

= ( x4 + 1 )2 - x4

= ( x4 + 1 - x2 ) ( x4 + 1 + x2 )

1 tháng 9 2020

a) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)^3+z^3+3.\left(x+y\right).z.\left(x+y+z\right)\right]-x^3-y^3-z^3\)

\(=\left[x^3+y^3+3xy.\left(x+y\right)+z^3+3\left(x+y\right).z.\left(x+y+z\right)\right]-x^3-y^3-z^3\)

\(=3xy\left(x+y\right)+3\left(x+y\right)z.\left(x+y+z\right)\)

\(=3.\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

b) \(x^4+2012x^2+2011x+2012\)

\(=x^4-x+2012x^2+2012x+2012\)

\(=x.\left(x^3-1\right)+2012.\left(x^2+x+1\right)\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

a) \(x^2-xy+4x-2y+4\)

\(=\left(x^2+4x+4\right)-\left(xy+2y\right)\\ =\left(x+2\right)^2-y.\left(x+2\right)\)

\(=\left(x+2\right).\left(x+2-y\right)\)

b) \(2x^2-5x-3\)

\(=2x^2+x-6x-3\)

\(=\left(2x^2+x\right)-\left(6x+3\right)=x\left(2x+1\right)-3\left(2x+1\right)\)

\(=\left(2x+1\right).\left(x-3\right)\)

c)\(\)

c);d);e) tạm thời tớ chưa nghĩ ra-.-"

tham khả tạm 2 câu ạ, chúc học tốt'.'

9 tháng 10 2020

2x( x - 1 ) - x( 1 - x )2 - ( 1 - x )3

= 2x( x - 1 ) - x( x - 1 )2 + ( x - 1 )3

= ( x - 1 )[ 2x - x( x - 1 ) + ( x - 1 )2 ]

= ( x - 1 )( 2x - x2 + x + x2 - 2x + 1 )

= ( x - 1 )( x + 1 )

9 tháng 10 2020

Ta có: \(2x\left(x-1\right)-x\left(1-x\right)^2-\left(1-x\right)^3\)

\(=\left(x-1\right)\left(2x-x^2+x+x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\)