Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\\ =\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\\ 2,=a^{10}-a+a^5-a^2+a^2+a+1\\ =a\left(a^3-1\right)\left(a^3+1\right)+a^2\left(a^3-1\right)+\left(a^2+a+1\right)\\ =\left(a-1\right)\left(a^2+a+1\right)\left(a^4+a^2+a\right)+\left(a^2+a+1\right)\\ =\left(a^2+a+1\right)\left[\left(a-1\right)\left(a^4+a^2+a\right)+1\right]\\ =\left(a^2+a+1\right)\left(a^5-a^4+a^3-a+1\right)\)
\(3,=a^8+a^7-a^7+a^6-a^6+a^5-a^5+a^4-a^4+a^3-a^3+a^2-a^2+a+1\\ =a^6\left(a^2+a+1\right)-a^5\left(a^2+a+1\right)+a^3\left(a^2+a+1\right)-a^2\left(a^2+a+1\right)+\left(a^2+a+1\right)\\ =\left(a^2+a+1\right)\left(a^6-a^5+a^3-a^2+1\right)\)
\(4,=a^8+a^7-a^6+a^6+1=a^6\left(a^2+a+1\right)-\left(a^3-1\right)\left(a^3+1\right)\\ =\left(a^2+a+1\right)\left[a^6-\left(a-1\right)\left(a^3+1\right)\right]\\ =\left(a^2+a+1\right)\left(a^6-a^4-a+a^3-1\right)\)
\(5,=\left(a^{16}+2a^8b^8+b^{16}\right)-a^8b^8=\left(a^4+b^4\right)^2-\left(a^4b^4\right)^2\\ =\left(a^4+b^4-a^4b^4\right)\left(a^4+b^4+a^4b^4\right)\\ 6,=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\\ =\left(a^2+8a+11\right)^2-16+15\\ =\left(a^2+8a+11\right)^2-1\\ =\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
Câu 7 mình làm riêng nhé
\(7,=8x^3y^2+4x^2y^3+y^2z^3-y^3z^2+x^2z^2\left(2x+z\right)\\ =\left(8x^3y^2+y^2z^3\right)+\left(4x^2y^3-y^3z^2\right)+x^2z^2\left(2x+z\right)\\ =y^2\left(2x+z\right)\left(4x^2-2xz+z^2\right)+y^3\left(2x-z\right)\left(2x+z\right)+x^2z^2\left(2x+z\right)\\ =\left(2x+z\right)\left(4x^2y^2-2xyz+y^2z^2+2xy^3-2y^3z+x^2z^2\right)\)
Từ đây chịu thôi ;-;
a: =(x+y)^3+z^3-3xy(x+y)-3xyz
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
b: \(=\left(x+y+y-z\right)^3-3\left(x+y\right)\left(y-z\right)\left(x+y+y-z\right)+\left(z-x\right)^3\)
\(=\left(x-z\right)^3+\left(z-x\right)^3-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
\(=-3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)
c: \(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
=(x^2+x+5)(x^2+x-2)
=(x^2+x+5)(x+2)(x-1)
d: =b^2c+bc^2+ac^2-a^2c-a^2b-ab^2
=b^2c-b^2a+bc^2-a^2b+ac^2-a^2c
=b^2(c-a)+b(c^2-a^2)+ac(c-a)
=(c-a)(b^2+ac)+b(c-a)(c+a)
=(c-a)(b^2+ac+bc+ba)
=(c-a)[b^2+bc+ac+ab]
=(c-a)[b(b+c)+a(b+c)]
=(c-a)(b+c)(b+a)
chuyển về dạng nguyên thể rồi tính thể chất khối lượng sau đó quay về đang tìm mũ của nhiều số làm ra rồi thì dễ lắm bạn ạ k minh nha
a)\(\left(x^2-2\right)\left(x^2+2x+2\right)\)
b)\(\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)
c)\(-2\left(x-4\right)\left(2x+1\right)\)
d)\(\left(x-5\right)\left(4x+1\right)\)
e)\(3\left(x-2\right)\left(3x-2\right)\)
g)\(2\left(a-b\right)^2\)
h)\(\left(xy-3\right)\left(5y^2-2z\right)\)
i)\(\left(4x+1\right)\left(2x-y\right)\)
l)\(abc^2\left(b-a\right)\left(b+c\right)\)
m)\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
a) (x - 1)(x + l)(x - 2)(x - 4). b) (x - 2)( x 2 + 4).
c) 2y(3 x 2 + y 2 ). d) 2(x + y + z) ( a - b ) 2 .
a. \(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)
\(=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left[\left(x-3\right)^2-1\right]\left(x^2-1\right)\)
\(=\left(x-3+1\right)\left(x-3-1\right)\left(x+1\right)\left(x-1\right)\)
\(=\left(x-2\right)\left(x-4\right)\left(x+1\right)\left(x-1\right)\)
b. \(x^3-2x^2+4x-8\)
\(=\left(x^3+4x\right)-\left(2x^2+8\right)\)
\(=x\left(x^2+4\right)-2\left(x^2+4\right)\)
\(=\left(x-2\right)\left(x^2+4\right)\)
c. \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)
\(=6x^2y+2y^3\)
\(=2y\left(3x^2+y^2\right)\)
d. \(2a^2\left(x+y+z\right)-4ab\left(x+y+z\right)+2b^2\left(x+y+z\right)\)
\(=\left(2a^2-4ab+2b^2\right)\left(x+y+z\right)\)
\(=2\left(a^2-2ab+b^2\right)\left(x+y+z\right)\)
\(=2\left(a-b\right)^2\left(x+y+z\right)\)
\(3,=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)-\left(z-x\right)^3+\left(z-x\right)^3\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)
\(4,=\left(x^4+3x^3-x^2\right)+\left(3x^3+9x^2-3x\right)-\left(x^2+3x-1\right)\\ =x^2\left(x^2+3x-1\right)+3x\left(x^2+3x-1\right)-\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)\left(x^2+3x-1\right)\\ =\left(x^2+3x-1\right)^2\)