K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2016

(a+b+c)^3 thì viết được thành [(a+b)+c)]^3 rồi AD hằng đẳng thức để tính. Còn với (a^3+b^3+c^3) ta viết được (a+b)^3 -3a^2b -3ab^2 + c^3=(a+b)^3 -3ab(a+b)+c^3 ...thay vào rồi đổi biến

11 tháng 10 2017

 k bt nhoak

11 tháng 8 2020

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-4\left(a^3+b^3+c^3\right)-12abc\)

\(=-3\left(a^3+b^3+c^3\right)+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-12abc\)

\(=-3\left(\left(a^3+b^3+c^3\right)-\left(a+b\right)\left(b+c\right)\left(c+a\right)+4abc\right)\)

XONG NHAAAAA :3333333

16 tháng 9 2016

A/ \(16x-5x^2-3=\left(15x-3\right)-\left(5x^2-x\right)=3\left(5x-1\right)-x\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)

B/ \(x^3-3x^2+1-3x=\left(x^3-4x^2+x\right)+\left(x^2-4x+1\right)=x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

C/ \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

D/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)

16 tháng 9 2016

47554

16 tháng 11 2016

         a(b3-c3) -b(b3-c3+a3-b3)+c(a3-b3)

=a(b3-c3)-b(b3-c3)-b(a3-b3)+c(a3-b3)

=(b3-c3)(a-b)-(a3-b3)(b-c)

=(b-c)(b2+cb+c2)(a-b)-(a-b)(a2+ab+b2)(b-c)

=(b-c)(a-b)(b2+Cb+c2-a2-ab-b2)

=(b-c)(a-b)(c2+cb-ab-a2)

=(b-c)(a-b)[(c-a)(c+a)+b(c-a)]

=(b-c)(a-b)(c-a)(a+c+b)

9 tháng 4 2019

Đặt \(a+b=m;a-b=n\)

Ta có:\(\Rightarrow\hept{\begin{cases}\left(a+b\right)^2=m^2\\\left(a-b\right)^2=n^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2+2ab+b^2=m^2\\a^2-2ab+b^2=n^2\end{cases}}\Rightarrow\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)=m^2-n^2\)

\(\Rightarrow4ab=m^2-n^2\)

Mặt khác :\(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=m\left(n^2+\frac{m^2+n^2}{4}\right)\)

Ta lại có:\(A=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\)

\(=\left(m+c\right)^3-4\left[m\left(n^2+\frac{m^2-n^2}{4}\right)+c^3\right]-12abc\)

\(=m^3+3m^2c+3c^2m+c^3-4\left(mn^2+\frac{m^2-n^2}{4}+c^3\right)-12abc\)

\(=m^3+3m^2c+3c^2m+c^3-4\left(\frac{4mn^2+m^3-mn^2}{4}+c^3\right)-3c\left(m^2-n^2\right)\)

\(=m^3+3m^2c+3c^2m+c^3-4\cdot\frac{m^3+3mn^2}{4}-4c^3-3cm^2+3cn^2\)

\(=m^3+3cm^2+3c^2m+c^3-m^3-3mn^2-4c^3-3cm^2+3cn^2\)

\(=\left(m^3-m^3\right)+\left(3cm^2-3cm^2\right)+3c^2m+\left(c^3-4c^3\right)+3cn^2-3mn^2\)

\(=3c^2m-3c^3+3cn^2-3mn^2\)

\(=3\left(c^2m-c^3+cn^2-mn^2\right)\)

\(=3\left[c^2\left(m-c\right)+n^2\left(c-m\right)\right]\)

\(=3\left(c^2-n^2\right)\left(m-c\right)\)

\(=3\left(c-n\right)\left(c+n\right)\left(m-c\right)\)

\(=3\left(c-a+b\right)\left(c+a-b\right)\left(a+b-c\right)\)

P/S:Bài giải dài.có j sai thông cảm cho e nha!

16 tháng 9 2016

a) = (x + 1)^3 - 27z^3 = (x+1 - 3z)( (x+1)^2 + 3z(x+1) + 9z^2 )

b)= x^2 + x+ 3x + 3 = x (x+1) +3 (x+1) =(x+3)(x+1)

c) = 2x^2 - 2x + 5x - 5 = 2x(x-1) + 5(x-1) = (2x+5)(x-1)

d) = (a^2 + 1 - 2a)(a^2 +2a +1) = (a-1)^2 * (a+1)^2 

e) = x^3 ( x-1) - (x^2 - 1) = x^3 ( x-1) - (x+1)(x-1) = (x^3 -x -1)(x-1)

16 tháng 11 2016

Bài này làm cũng dài lắm. Mai mình làm cho

1 tháng 1 2022

a) \(x^7+x^5+1\)

\(=x^7-x+x^5-x^2+x^2+x+1\)

\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]

\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)

b) \(x^5-x^4-1\)

\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)

\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)