Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AC'}+\overrightarrow{CA'}+\overrightarrow{BD'}+\overrightarrow{DB'}\)
\(=2\left(\overrightarrow{OC'}+\overrightarrow{OA'}\right)+2\left(\overrightarrow{OD'}+\overrightarrow{OB'}\right)\)
\(=2.\left(-2\overrightarrow{OI}\right)+2.\left(-2\overrightarrow{OI}\right)\)
\(=-4.2\overrightarrow{OI}\)
\(\Rightarrow2\overrightarrow{OI}=-\dfrac{1}{4}\left(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{x}+\overrightarrow{y}\right)\)
câu 1 : bài này có thể giải với nhiều loại cách khác nhau ; giờ mk sẽ giải cho bn bài này với 2 cách .
\(cách_1:\) vì đường tròn \(\left(x-2\right)^2+\left(y-1\right)^2=16\) là ảnh của đường tròn cần tìm được tịnh tiến theo \(\overrightarrow{v}\left(1;3\right)\)
nên ta lấy ảnh của đường tròn này tịnh tiến với véc tơ đối của \(\overrightarrow{v}\) là xong
ta có : \(\overrightarrow{n}\left(-1;-3\right)=-\overrightarrow{v}\left(1;3\right)\)
theo công thức ta có \(\left\{{}\begin{matrix}x'=x-1\\y'=y-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=y'+1\\x=x'+3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2=16\)
\(\Leftrightarrow\left(x'+1-2\right)^2+\left(y'+3-1\right)^2=16\)
\(\Leftrightarrow\left(x'-1\right)^2+\left(y'+2\right)^2=16\)
vậy đường tròn lúc đầu có phương trình \(\left(x-1\right)^2+\left(y+2\right)^2=16\)
\(cách_2:\)vì là ảnh nên \(x;y\) trong \(\left(x-2\right)^2+\left(y-1\right)^2=16\) là \(x';y'\) trong công thức .
theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+1\\y'=y+3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^2+\left(y-1\right)^2=16\)
\(\Leftrightarrow\left(x+1-2\right)^2+\left(y+3-1\right)^2=16\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=16\)
vậy đường tròn lúc đầu có phương trình \(\left(x-1\right)^2+\left(y+2\right)^2=16\)
(bn chú ý \(x;y\) và \(x';y'\) trong 2 cách làm là khác nhau nha ; mk có giải thích ở trên) .
câu 2 : với \(T_{\overrightarrow{v}}\left(A\right)\)
theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x'=1+1=2\\y'=6+5=11\end{matrix}\right.\)
\(\Rightarrow C\left(2;11\right)\)
với \(T_{\overrightarrow{v}}\left(B\right)\)
theo công thức ta có : \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x'=-1+1=0\\y'=-4+5=1\end{matrix}\right.\)
\(\Rightarrow D\left(0;1\right)\)
vậy điểm \(C\left(2;11\right);D\left(0;1\right)\)
Câu 1:
\(\left(2x+1\right)\left(x^2-2x+3\right)=2x^3-4x^2+6x+x^2-2x+3\)
\(=2x^3-3x^2+4x+3\)
\(\Rightarrow\left[\left(2x+1\right)\left(x^2-2x+3\right)\right]'=6x^2-6x+4\) \(\Rightarrow a+b+c=6-6+4=4\)
Câu 2:
\(v\left(t\right)=s'\left(t\right)=-t^3+9t^2-2\)
\(a\left(t\right)=v'\left(t\right)=-3t^2+18t\)
\(a'\left(t\right)=-6t+18=0\Rightarrow t=3\)
\(\Rightarrow\) vật đạt gia tốc lớn nhất sau 3s kể từ khi chuyển động
Câu 3:
\(y'=x^2-6x-9\)
Gọi tiếp tuyến d' tại \(M\left(x_0;y_0\right)\) có pt \(y=\left(x_0^2-6x_0-9\right)\left(x-x_0\right)+y_0\)
Do \(d//d'\Rightarrow x_0^2-6x_0-9=3\Rightarrow x_0^2-6x_0-12=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=3+\sqrt{21}\\x_0=3-\sqrt{21}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y_0=...\\y_0=...\end{matrix}\right.\) \(\Rightarrow\) pttt
Có vẻ bạn chép sai đề, tiếp tuyến quá xấu
Câu 4:
Ta có: \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)
\(BD\perp AC\) (tính chất hình thoi)
\(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SI\)
b/ \(\left(SBD\right)\cap\left(ABCD\right)=BD\); mà \(\left(SAC\right)\perp BD\)
\(\Rightarrow\widehat{SIA}\) là góc giữa (SBD) và (ABCD)
Đặt \(AB=x\); do \(\widehat{ABC}=60^0\Rightarrow\Delta ABC\) đều \(\Rightarrow AC=x\)
\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCA}=45^0\)
\(\Rightarrow SA=AC.tan\widehat{SCA}=x.1=x\)
\(AI=\frac{1}{2}AC=\frac{x}{2}\Rightarrow tan\widehat{SIA}=\frac{SA}{AI}=\frac{x}{\frac{x}{2}}=2\)
\(\Rightarrow\widehat{SIA}\approx63^026'\)
Chọn D.
- Ta phân tích: