Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác DBC, ta có:
O là trung điểm cạnh BD (tính chất hình chữ nhật)
OH // BC (cùng vuông góc với CD)
⇒ OH là đường trung bình tam giác BCD.
⇒ H là trung điểm của CD (đpcm).
Đoạn dây xích được chia thành:
• Hai đoạn dài có độ dài bằng nhau, tức là AB = CD;
• Hai đoạn ngắn có độ dài bằng nhau, tức là AD = BC.
Tứ giác ABCD có AB = CD; AD = BC nên tứ giác ABCD là hình bình hành.
78. Đố. Hình 103 biểu diễn một phần của cửa xếp, gồm những thanh kim loại dài bàng nhau và được liên kết với nhau bởi các chốt tại hai đầu và tại trung điểm. Vì sao tại mỗi vị trí của cửa xếp, các tứ giác trên hình vẽ đều là hình thoi, các điểm chốt I, K, M, N, O nằm trên một đường thẳng ?
Bài giải:
Các tứ giác IEKF, KGMH là hình thoi nên KI là phân giác góc EKF, KM là phân giác của góc GKH.
Mà ˆEKFEKF^ = ˆHKGHKG^
Nên ˆK1K1^ = ˆK2K2^ = ˆK4K4^ = ˆK5K5^
Do đó ˆK2K2^ +ˆK3K3^ + ˆK4K4^ = ˆK2K2^ + ˆK3K3^ + ˆK1K1^=1800
Suy ra I, K, M thẳng hàng.
Chứng minh tương tự, các điểm I, K, M, N, O cùng nằm trên một đường thẳng.
Các tứ giác IEKF, KGMH là hình thoi nên KI là phân giác góc EKF, KM là phân giác của góc GKH.
Mà ˆEKFEKF^ = ˆHKGHKG^
Nên ˆK1K1^ = ˆK2K2^ = ˆK4K4^ = ˆK5K5^
Do đó ˆK2K2^ +ˆK3K3^ + ˆK4K4^ = ˆK2K2^ + ˆK3K3^ + ˆK1K1^=1800
Suy ra I, K, M thẳng hàng.
Chứng minh tương tự, các điểm I, K, M, N, O cùng nằm trên một đường thẳng.
Em cắt bốn tứ giác như nhau bằng giấy rồi thực hiện các bước theo yêu cầu bài toán.
Ta có thể ghép bốn tứ giác khít nhau như Hình 3.1b.
- Nhận xét: Bốn góc tại điểm chung của bốn tứ giác được ghép khít nhau.
Khi đó: \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \)
Do \(\widehat{A}+\widehat{D}=120^o+60^o=180^o\)
\(\Rightarrow AB//CD\)
\(\Rightarrow\) ABCD là hình thang.
Hai cạnh AB và CD của tứ giác ABCD có song song với nhau.
Áp dụng định lí tổng bốn góc trong một tứ giác vào tứ giác HEFG, ta có:
\(\widehat H + \widehat E + \widehat F + \widehat G = {360^o}\)
\(\widehat E\)+10°+\(\widehat E\)+60°+50°=360o
2\(\widehat E\)+120°=360°
Suy ra 2\(\widehat E\)=360°−120°=240°
Khi đó \(\widehat E\)=120°
Suy ra \(\widehat H\)=\(\widehat E\)+10°=120°+10°=130°
Vậy \(\widehat H\)=130°; \(\widehat E\)= 120°
• Hình 3.8a)
Xét tứ giác ABCD có:
\(\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\)
Hay \(90°+90°+\widehat C+90°=360°\)
Khi đó \(\widehat C\)+270°=360°
Do đó \(\widehat C\)=360°−270°=90°.
Vậy \(\widehat C\)=90°
• Hình 3.8b)
Vì \(\widehat {{\rm{VUS}}}\) và \(\widehat {VUx}\) là hai góc kề bù nên ta có: \(\widehat {{\rm{VUS}}} + \widehat {VUx} = {180^o}\)
Hay \(\widehat {{\rm{VUS}}}\)+60°=180°
Suy ra \(\widehat {{\rm{VUS}}}\)=180°−60°=120°
Vì \(\widehat {US{\rm{R}}}\)và \(\widehat {USy}\)là hai góc kề bù nên ta có: \(\widehat {US{\rm{R}}} + \widehat {USy} = {180^o}\)
Hay \(\widehat {US{\rm{R}}}\)+110°=180o
Suy ra \(\widehat {US{\rm{R}}}\) =180°−110°=70°
Do đó \(\widehat {US{\rm{R}}}\)=70°
Xét tứ giác VUSR có:
\(\widehat V + \widehat {{\rm{VUS}}} + \widehat {V{\rm{SR}}} + \widehat R = {360^o}\)
Hay 90°+120°+70°+\(\widehat R\)=360°
Khi đó 280°+\(\widehat R\)=360°
Do đó \(\widehat R\)=360°−280°=80°
Vậy \(\widehat R\)=80°
Hai đầu mút của hai thanh tre tạo thành bốn đỉnh của tứ giác.
Tứ giác đó có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên tứ giác đó là hình chữ nhật.
Vậy khi các đầu mút của hai thanh tre đó tạo thành bốn đỉnh của một tứ giác thì tứ giác đó là hình chữ nhật.