Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C G M N E F d I
Qua 2 điểm B và C kẻ đường thẳng song song với đường thẳng d cắt tia AG lần lượt tại E và F
Gọi AI là trung tuyến của \(\Delta\)ABC
Theo ĐL Thales ta có các tỉ số: \(\frac{AB}{AM}=\frac{AE}{AG};\frac{AC}{AN}=\frac{AF}{AG}\)
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{AE+AF}{AG}=\frac{2AE+IE+IF}{AG}\)
Dễ thấy \(\Delta\)BEI=\(\Delta\)CFI (g.c.g) => IE = IF (2 cạnh tương ứng) => IE + IF = 2.IE
\(\Rightarrow\frac{AB}{AM}+\frac{AC}{AN}=\frac{2AE+2IE}{AG}=\frac{2AI}{AG}=\frac{3AG}{AG}=3\)
\(\Leftrightarrow\left(\frac{AB}{AM}+\frac{AC}{AN}\right)^2=9\ge4.\frac{AB.AC}{AM.AN}\)(BĐT Cauchy)
\(\Leftrightarrow\frac{AB.AC}{AM.AN}\le\frac{9}{4}\Leftrightarrow AM.AN\ge\frac{4.AB.AC}{9}\)
\(\Rightarrow S_{AMN}\ge\frac{4}{9}.S_{ABC}\Leftrightarrow\frac{S_{ABC}}{S_{AMN}}\le\frac{9}{4}\)(đpcm).
Đẳng thức xảy ra <=> \(\frac{AB}{AM}=\frac{AC}{AN}\)<=> MN // BC <=> d // BC.
a. Quang tự vẽ hình nhé.
Ta thấy \(\frac{AM}{AC}=\frac{AM}{AK}.\frac{AK}{AC}\). Mà theo định lý Ta let : \(\frac{AM}{AK}=\frac{AI}{AB};\frac{AK}{AC}=\frac{AN}{AI}\)
Như vậy thì \(\frac{AM}{AC}=\frac{AI}{AB}.\frac{AN}{AI}=\frac{AN}{AB}\)
Từ đó suy ra \(\frac{AM}{AC}=\frac{AN}{AB}\) hay MN // BC.
a: Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>BD//CH
Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: BHCD là hình bình hành
nên BC cắt HD tại trung điểm của mỗi đường
=>I là trung điểm của HD
Xét ΔDAH có DI/DH=DO/DA
nen Io//AH và IO=AH/2
=>AH=2OI
c: G là trọng tâm
nên AG=2AI
Xét ΔAHD có
AI là trung tuyến
AG=2/3AI
DO đó: G là trọng tâm