K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

GIỐNG ĐỀ MÌNH THẬT!!!

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk

15 tháng 7 2018

a,  A B M ^ = A N B ^ = 1 2 s đ B M ⏜

Chứng minh được: ∆ABM:∆ANB (g.g) => ĐPCM

b, Chứng minh AO ^ BC áp dụng hệ thức lượng trong tam giác vuông ABO và sử dụng kết quả câu a) Þ AB2 = AH.AO

c, Chứng minh được  A B I ^ = C B I ^ B I ⏜ = C I ⏜ => BI là phân giác  A B C ^ . Mà AO là tia phân giác  B A C ^ => I là tâm đường tròn nội tiếp ∆ABC

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Lời giải:
1.

Vì $AB,AC$ là tiếp tuyến của $(O)$ nên \(AB\perp OB; AC\perp OC\)

\(\Rightarrow \widehat{ABO}=\widehat{ACO}=90^0\)

Tứ giác $ABOC$ có tổng hai góc đối nhau \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\) nên $ABOC$ là tứ giác nội tiếp.

2.

Xét tam giác $ABE$ và $ADB$ có:

\(\widehat{A}\) chung

\(\widehat{ABE}=\widehat{ADB}\) (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó, cụ thể ở đây là cung $BE$)

\(\Rightarrow \triangle ABE\sim \triangle ADB(g.g)\)

\(\Rightarrow \frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AE.AD(1)\)

Vì $AB=AC$ (t/c hai tiếp tuyến cắt nhau tại 1 điểm)

\(OB=OC=R\)

\(\Rightarrow OA\) là tiếp tuyến của $BC$. Do đó $OA\perp BC$ tại $H$

Xét tam giác vuông tại $B$ là $BAO$ có đường cao $AH$, theo hệ thức lượng trong tam giác vuông thì \(AB^2=AH.AO(2)\)

Từ \((1);(2)\Rightarrow AE.AD=AH.AO\)

Vậy ta có đpcm.

3.Gọi \(K=BI\cap (O)\)

Vì $I$ là tâm đường tròn nội tiếp $BCD$ nên $BI,CI$ là phân giác góc \(\widehat{CBD}, \widehat{BCD}\)

\(\Rightarrow \widehat{CBK}=\widehat{DBK}\)\(\Rightarrow \text{cung (DK)}=\text{cung (CK)}\Rightarrow DK=CK(*)\)

Lại có:

\(\widehat{ICK}=\widehat{ICD}+\widehat{DCK}=\widehat{ICD}+\widehat{DBK}\) (góc nt cùng chắn cung $DK$)

\(=\frac{\widehat{BCD}}{2}+\frac{\widehat{DBC}}{2}=\widehat{BCI}+\widehat{CBI}=\widehat{CIK}\)

Do đó tam giác $CIK$ cân tại $K$

\(\Rightarrow KC=KI(**)\)

Từ \((*); (**)\Rightarrow KC=KD=KI\) hay $K$ là tâm đường tròn ngoại tiếp tam giác $DCI$

Mà $K\in (O)$ nên ta có đpcm.

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Hình vẽ:

Ôn tập góc với đường tròn

6 tháng 5 2021

PiucRYU.png

a) Vì AB,AC là tiếp tuyến của (O) \(\Rightarrow\hept{\begin{cases}AB\perp OB\\AC\perp OC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{ABO}=90^0\\\widehat{ACO}=90^0\end{cases}}\)

Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=180^0\)

Mà 2 góc này ở vị trí đối nhau trong tứ giác ABOC

\(\Rightarrow ABOC\)nội tiếp ( dhnb )

b) Xét (O) có AB là tiếp tuyến tại B ; MB là dây cung

\(\Rightarrow\widehat{ABM}=\widehat{ANB}\left(=\frac{1}{2}sđ\widebat{MB}\right)\)

Xét tam giác ABM và tam giác ANB có:

\(\hept{\begin{cases}\widehat{BAN}chung\\\widehat{ABM}=\widehat{ANB}\left(cmt\right)\end{cases}\Rightarrow\Delta ABM~\Delta ANB\left(g-g\right)}\)

\(\Rightarrow\frac{AB}{AM}=\frac{AN}{AB}\Rightarrow AB^2=AM.AN\left(1\right)\)

c)  Gọi H là giao điểm của BC và AO 

Xét tam giác ABH và tam giác AOB có:

\(\hept{\begin{cases}\widehat{BAO}chung\\\widehat{AHB}=\widehat{ABO}=90^0\end{cases}}\Rightarrow\Delta ABH~\Delta AOB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AH}=\frac{AO}{AB}\Rightarrow AB^2=AO.AH\left(2\right)\)

Từ (1) và (2) \(\Rightarrow AM.AN=AH.AO\)

\(\Rightarrow\frac{AM}{AH}=\frac{AO}{AN}\)

Xét tam giác AMH và tam giác AON có:

\(\hept{\begin{cases}\widehat{NAO}chung\\\frac{AM}{AH}=\frac{AO}{AN}\left(cmt\right)\end{cases}\Rightarrow\Delta AMH~\Delta AON\left(c-g-c\right)}\)

\(\Rightarrow\widehat{AHM}=\widehat{ANO}\)

Mà \(\widehat{AHM}+\widehat{MHO}=180^0\)

\(\Rightarrow\widehat{ANO}+\widehat{MHO}=180^0\)

Xét tứ giác MHON có 

\(\widehat{ANO}+\widehat{MHO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác  MHON

\(\Rightarrow MHON\)nội tiếp ( dhnb ) 

\(\Rightarrow\widehat{NMO}=\widehat{NHO}\left(3\right)\)

Vì H là giao điểm của BC và AO ( h.vẽ )

Mà \(AB,AC\)là tiếp tuyến của (O)

\(\Rightarrow BC\perp OA\)

\(\Rightarrow\widehat{BHO}=90^0\)

Vì NF là tiếp tuyến của (O) tại N

\(\Rightarrow\widehat{ÒNF}=90^0\)

Xét tứ giác FHON có:\(\widehat{FHO}+\widehat{FNO}=180^0\)mà 2 góc này ở vị trí đối nhau trong tứ giác FHON

=> FHON nội tiếp ( dhnb )

\(\Rightarrow\widehat{NHO}=\widehat{NFO}\left(4\right)\)

Từ (3) và (4) \(\Rightarrow\widehat{NMO}=\widehat{NFO}\)

\(\Rightarrow FMON\)nội tiếp (dhnb)

\(\Rightarrow\widehat{FMO}+\widehat{FNO}=180^0\)

\(\Rightarrow\widehat{FMO}=90^0\)

\(\Rightarrow FM\perp OM\)

\(\Rightarrow FM\)là tiếp tuyến của (O) 

d)  Vì E thuộc đường tròn ngoại tiếp tam giác MNO 

\(\Rightarrow E\)thuộc đường tròn đường kính OF

\(\Rightarrow\widehat{OEF}=90^0\)

+) Vì E thuộc đường tròn ngoại tiếp tứ giác ABOC hay E thuộc đường tròn đường kính AO

\(\Rightarrow\widehat{AEO}=90^0\)

\(\Rightarrow\widehat{OEF}+\widehat{AEO}=180^0\)

\(\Rightarrow A,E,F\)thẳng hàng

Lại có vì góc AEO= 90 độ \(\Rightarrow OE\perp AF\left(5\right)\)

Gọi K là trung điểm của MN

\(\Rightarrow OF\perp MN\)

\(\Rightarrow AK\perp OF\)

Xét tam giác AOF có: \(\hept{\begin{cases}AK\perp OF\\FH\perp AO\end{cases}}\)mà AK cắt FH tại P

=> P là trực tâm của tam giác AOF

\(\Rightarrow OP\perp AF\left(6\right)\)

Từ (5) và (6) \(\Rightarrow O,E,P\)thẳng hàng ( đpcm )

22 tháng 3 2018

a)  Chứng minh tứ giác ABOC nội tiếp được đường tròn.

A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0

=> tứ giác ABOC nội tiếp được đường tròn.

b)  Vẽ cát tuyến ADE  của (O) sao cho ADE  nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh  A B 2 = A D . A E .

Tam giác ADB đồng dạng với tam giác ABE

⇒ A B A E = A D A B ⇔ A B 2 = A D . A E

c)  Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H  thẳng hàng.

Ta có  D H A ^ = E H O ^

nên  D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H  thẳng hàng.

19 tháng 5 2022

Có 1 phần câu trả lời ở đây.

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube