K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Lời giải:
1.

Vì $AB,AC$ là tiếp tuyến của $(O)$ nên \(AB\perp OB; AC\perp OC\)

\(\Rightarrow \widehat{ABO}=\widehat{ACO}=90^0\)

Tứ giác $ABOC$ có tổng hai góc đối nhau \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\) nên $ABOC$ là tứ giác nội tiếp.

2.

Xét tam giác $ABE$ và $ADB$ có:

\(\widehat{A}\) chung

\(\widehat{ABE}=\widehat{ADB}\) (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó, cụ thể ở đây là cung $BE$)

\(\Rightarrow \triangle ABE\sim \triangle ADB(g.g)\)

\(\Rightarrow \frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AE.AD(1)\)

Vì $AB=AC$ (t/c hai tiếp tuyến cắt nhau tại 1 điểm)

\(OB=OC=R\)

\(\Rightarrow OA\) là tiếp tuyến của $BC$. Do đó $OA\perp BC$ tại $H$

Xét tam giác vuông tại $B$ là $BAO$ có đường cao $AH$, theo hệ thức lượng trong tam giác vuông thì \(AB^2=AH.AO(2)\)

Từ \((1);(2)\Rightarrow AE.AD=AH.AO\)

Vậy ta có đpcm.

3.Gọi \(K=BI\cap (O)\)

Vì $I$ là tâm đường tròn nội tiếp $BCD$ nên $BI,CI$ là phân giác góc \(\widehat{CBD}, \widehat{BCD}\)

\(\Rightarrow \widehat{CBK}=\widehat{DBK}\)\(\Rightarrow \text{cung (DK)}=\text{cung (CK)}\Rightarrow DK=CK(*)\)

Lại có:

\(\widehat{ICK}=\widehat{ICD}+\widehat{DCK}=\widehat{ICD}+\widehat{DBK}\) (góc nt cùng chắn cung $DK$)

\(=\frac{\widehat{BCD}}{2}+\frac{\widehat{DBC}}{2}=\widehat{BCI}+\widehat{CBI}=\widehat{CIK}\)

Do đó tam giác $CIK$ cân tại $K$

\(\Rightarrow KC=KI(**)\)

Từ \((*); (**)\Rightarrow KC=KD=KI\) hay $K$ là tâm đường tròn ngoại tiếp tam giác $DCI$

Mà $K\in (O)$ nên ta có đpcm.

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Hình vẽ:

Ôn tập góc với đường tròn

19 tháng 5 2022

Lời giải 1 bài toán tương tự - Dài và khó

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

29 tháng 5 2017

GIỐNG ĐỀ MÌNH THẬT!!!

2 tháng 2 2018

a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.

Vậy tứ giác ABOC là tứ giác nội tiếp.

b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)

\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)

Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:

\(AH.AO=AB^2\)

Suy ra AD.AE = AH.AO

c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)

\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)

\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)

Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)

\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)

\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)

Sử dụng bất đẳng thức Cô-si ta có:

\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)

26 tháng 8 2020

acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk

15 tháng 7 2018

a,  A B M ^ = A N B ^ = 1 2 s đ B M ⏜

Chứng minh được: ∆ABM:∆ANB (g.g) => ĐPCM

b, Chứng minh AO ^ BC áp dụng hệ thức lượng trong tam giác vuông ABO và sử dụng kết quả câu a) Þ AB2 = AH.AO

c, Chứng minh được  A B I ^ = C B I ^ B I ⏜ = C I ⏜ => BI là phân giác  A B C ^ . Mà AO là tia phân giác  B A C ^ => I là tâm đường tròn nội tiếp ∆ABC

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.a. chứng minh tứ giác AMHN , BCMN nội tiếp.b. Tính độ dài cung nhỏ ACc. chứng minh đường thẳng AO vuông góc MN2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cma....
Đọc tiếp

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.

a. chứng minh tứ giác AMHN , BCMN nội tiếp.

b. Tính độ dài cung nhỏ AC

c. chứng minh đường thẳng AO vuông góc MN

2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cm

a. Chứng minh tứ giác ABOC nội tiếp

b. tính độ dài đoạn thẳng AB biết AO= 10cm

c. Gọi H là trung điểm của đoạn thẳng MN, chứng minh rằng góc AHB = góc AOB

3. từ 1 điểm H nằm ngoài đường tròn tâm O vẽ 2 tiếp tuyến MP, MN ( N, P thuộc đường tròn tâm O) và cát tuyến MAB ( A, B thuộc đường tròn tâm O). Chứng minh tư giác MPON nội tiếp 1 đường

ai giúp mình giải với mình cảm ơn nhiều

0