Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x<4\Rightarrow |x-4|=4-x\)
\(|x-5|=5-x\)
Biểu thức \(A=4-x+5-x=9-2x\)
Xét \(4\leq x<5 \Rightarrow |x-4|=x-4\) và \(|x-5|=5-x\) thay vào \(A=1\)
Xét \(x\geq5\Rightarrow|x-4|=x-4\) và \(|x-5|=x-5\) thay vào \(A=2x-9\)
\(|x-5|\)luôn \(\ge0\)
\(\Rightarrow\hept{\begin{cases}|x-5|=x-5\\|x-5|=-\left(x-5\right)=-x+5\end{cases}}\)
\(|x-4|\)luôn \(\ge0\)
\(\Rightarrow\hept{\begin{cases}|x-4|=x-4\\|x-4|=-\left(x-4\right)=-x+4\end{cases}}\)
Ta có các trường hợp:
\(\hept{\begin{cases}\text{|x-5|+|x-4|}=\left(x-5\right)+\left(x-4\right)=x-5+x-4=2x-9\\\text{|x-5|+|x-4|}=\left(-x+5\right)+\left(x-4\right)=-x+5+x-4=1\end{cases}}\)
\(\hept{\begin{cases}\text{|x-5|+|x-4|}=\left(-x+4\right)+\left(x-5\right)=-x+4+x-5=-1\\\text{|x-5|+|x-4|}=\left(-x+4\right)+\left(-x+5\right)=-x+4-x-5=-2x-1\end{cases}}\)
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(x^8=x^{12}:x^5\)
\(x^8=x^7\)
=> x8 - x7 = 0
x7.(x-1) = 0
=> x7 = 0=> x = 0
x-1 = 0 => x = 1
KL: x = 1 hoặc x = 0
\(\frac{x}{\left(x^4\right)^2}=\frac{x^{12}}{x^5}\)
=>\(\frac{x}{x^8}=x^7\)
=>\(\frac{1}{x^7}=x^7\)
=>\(1=x^7.x^7\)
=>\(1^{14}=x^{14}\)
=>\(x=1\)
Bạn ơi bạn làm sai rùi vs lại bạn xem lại đề đi tại vì pt trên nếu giải ra sẽ có hai nghiệp là x=1, x=0 nha bạn
1) \(\frac{5-2n}{n-1}=\frac{5-2n+2-2}{n-1}=\frac{5-2-2.\left(n-1\right)}{n-1}=\frac{3}{n-1}-\frac{2.\left(n-1\right)}{n-1}=\frac{3}{n-1}+2\)
Để biểu thức trên nguyên thì \(\frac{3}{n-1}\) nguyên => \(3⋮n-1\)
=> \(n-1\inƯ\left(3\right)\)
=> \(n-1\in\left\{1;-1;3;-3\right\}\)
=> \(n\in\left\{2;0;4;-2\right\}\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
2) \(\frac{3n-4}{n-1}=\frac{3n-3-1}{n-1}=\frac{3.\left(n-1\right)-1}{n-1}=\frac{3.\left(n-1\right)}{m-1}-\frac{1}{n-1}=3-\frac{1}{n-1}\)
Để biểu thức trên nguyên thì \(\frac{1}{n-1}\) nguyên
=> \(1⋮n-1\)
=> \(n-1\inƯ\left(1\right)\)
=> \(n-1\in\left\{1;-1\right\}\)
=> \(n\in\left\{2;0\right\}\)
Vậy \(n\in\left\{2;0\right\}\)
c) \(\frac{6n-5}{2n-4}=\frac{6n-12+7}{2n-4}=\frac{3.\left(2n-4\right)+5}{2n-4}=\frac{3.\left(2n-4\right)}{2n-4}+\frac{5}{2n-4}=3+\frac{5}{2n-4}\)
Để biểu thức trên nguyên thì \(\frac{5}{2n-4}\) nguyên => \(5⋮2n-4\)
=> \(2n-4\inƯ\left(5\right)\)
Mà 2n - 4 là số chẵn \(\forall\) n nguyên nên không tìm được giá trị của n thỏa mãn vì 5 là số lẻ, không có ước chẵn
Vậy không tồn tại giá trị của n thỏa mãn đề bài
\(\left(x-1\right)^5=-32\)
\(\Leftrightarrow\left(x-1\right)^5=\left(-2\right)^5\)
\(\Rightarrow x-1=-2\)
\(\Rightarrow x=-2+1\)
\(\Rightarrow x=-1\)
(x-1)5= -32
=>(x-1)5=(-2)5
=> x-1 = -2
=> x = -2 +1
=> x = -1.
\(A=\left|x-1\right|+\left|x-2\right|+...+\left|x-2015\right|\)
\(=\left|x-1\right|+\left|x-2015\right|+\left|x-2\right|+\left|x-2014\right|+...+\left|x-1007\right|+\left|x-1009\right|+\left|x-1008\right|\)
\(=\left|x-1\right|+\left|2015-x\right|+\left|x-2\right|+\left|2014-x\right|+...+\left|x-1007\right|+\left|1009-x\right|+\left|x-1008\right|\)
Ta có : \(\left|x\right|+\left|y\right|\ge\left|x+y\right|;"="\Leftrightarrow xy\ge0\)
\(\Rightarrow A=\left|x-1\right|+\left|2015-x\right|+\left|x-2\right|+\left|2014-x\right|+...+\left|x-1007\right|+\left|1009-x\right|+\left|x-1008\right|\)\(\ge\left|x-1+2015-x\right|+\left|x-2+2014-x\right|+...+\left|x-1007+1009-x\right|+\left|x-1008\right|\)
Lại do \(\left|x-1008\right|\ge0;"="\Leftrightarrow x=1008\)
\(\Rightarrow A\ge2014+2012+...+2=\frac{\left(2014+2\right)\left(\frac{2014-2}{2}+1\right)}{2}=\text{1015056}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)\left(2015-x\right)\ge0\\...\\\left(x-1007\right)\left(1009-x\right)\ge0\end{cases}}\)và \(x=2018\)
\(\Leftrightarrow\hept{\begin{cases}1\le x\le2015\\...\\1007\le x\le1009\end{cases};x=1008}\)\(\Leftrightarrow x=1008\)
Vậy Max \(A=\text{1015056}\)tại \(x=1008\)
Câu kết luận là min A nhé -.-
T^T
Chả bao giờ làm dc bài nào hoàn chỉnh :)
\(\left|3-2x\right|-3=-\left(-3\right)\)
\(\Rightarrow\left|3-2x\right|=6\)
\(\Rightarrow\left[{}\begin{matrix}3-2x=6\\3-2x=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\).
Ta có:
|3 - 2x| - 3 = -(-3)
|3 - 2x| - 3 = 3
|3 - 2x| = 3 + 3
|3 - 2x| = 6
=> 3 - 2x = 6 hoặc 3 - 2x = -6
TH1: 3 - 2x = 6
2x = 3 - 6
2x = -3
x = -1,5
TH2: 3 - 2x = -6
2x = 3 - (-6)
2x = 3 + 6
2x = 9
x = 4,5
Vậy x = -1,5 hoặc 4,5 là giá trị cần tìm
\(-\frac{2}{3}=\frac{10}{-15}=-\frac{10}{15}\)
\(\frac{4}{-5}=\frac{12}{-15}=-\frac{12}{15}\)
\(V\text{ì}-\frac{10}{15}>-\frac{12}{15}\)
Nên \(-\frac{2}{3}>-\frac{4}{5}\)
Ta có:
\(-\frac{2}{3}=\frac{4}{-6}\)
Vì \(\frac{4}{-6}>\frac{3}{-5}\Rightarrow\frac{-2}{3}>\frac{3}{-5}\)
Vậy \(\frac{-2}{3}>\frac{4}{-5}\)
\(=5^2\left(1+5\right)=25\cdot6⋮6\)