Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - 3x - 4=0
x^2 - 3x =0+4
x^2 -3x=4
x.x-3x=4
x.(x-3)=4
Suy ra x>3 và x ko thể bằng 3
Vậy x xhir có thể là 4
=x^2+x-4x-4
=(x^2+x)-(4x+4)
=x(x+1)-4(x+1)
=(x+1)(x-4)
=>
x=-1
và
x=4
-5555 + -5942 =-11497
Đây là toán lớp 6 chứ ko phải lớp 7 nha bạn !!!!!
a/ Xét tg vuông ABE và tg vuông PBE có
BE chung
\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
b/ Xét tg ABI và tg PBI có
\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\)
BI chung
\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)
Xét tg vuông ACF và tg vuông QCF có
CF chung
\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)
\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
Xét tg ACI và tg QCI có
\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)
CI chung
\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)
\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)
Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)
c/
Xét tg QIP có
IQ=IP => tg QIP cân ở I
Mà \(ID\perp BC\)
\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)
=> D là trung điểm của PQ
Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)
\(=>-\frac{2}{5}|x-1|+1\le1\)
Dấu "=" xảy ra \(< =>x=1\)
Vậy Max A = 1 khi x = 1
a) Xét tam giác ABD và tam giác EBD có:
AB = EB (gt).
^ABD = ^EBD (BD là phân giác).
BD chung.
=> Tam giác ABD = tam giác EBD (c - g - c).
=> DA = DE (cặp cạnh tương ứng).
b) Tam giác ABD = tam giác EBD (cmt).
=> ^BAD = ^BED (cặp góc tương ứng).
Mà ^BAD = 90 độ (tam giác ABC vuông tại A).
=> ^BED = 90 độ.
c) Xét tam giác KBC có:
CA là đường cao (^CAB = 90 độ).
KE là đường cao (^KEC = 90 độ).
Mà D là giao điểm của CA và KE.
=> D là trực tâm của tam giác KBC.
=> BD là đường cao.
=> BD vuông góc KC. (1)
Xét tam giác KBC có:
BD là đường cao (cmt).
BD là phân giác góc KBC (gt).
=> Tam giác KBC cân tại B.
Xét tam giác ABE có:
BE = BA (gt).
=> Tam giác ABE cân tại B.
Xét tam giác ABE cân tại B có:
BD là phân giác góc ABE (gt).
=> BD là đường cao (tính chất các đường trong tam giác cân).
=> BD vuông góc AE. (2)
Từ (1); (2) => AE // KC ( từ vuông góc đến song song).
a) Xét tam giác ABM và tam giác CDM có:
+ BM = DM (M là trung điểm BD).
+ ^AMB = ^CMD (đối đỉnh).
+ AM = CM (M là trung điểm AC).
=> Tam giác ABM = Tam giác CDM (c - g - c).
b) Vì tam giác ABM = tam giác CDM (cmt).
=> AB = CD (2 cạnh tương ứng).
Ta có: ^BAM = 90o (Tam giác ABC vuông tại A).
Mà ^BAM = ^DCM (tam giác ABM = tam giác CDM).
=> ^BAM = ^DCM = 90o.
=> CD vuông góc AC (đpcm).
c) Ta có: AB = CD (cmt).
Mà CD = CE (gt).
Xét tứ giác ACEB có:
+ AB = CE (cmt).
+ AB // AC (do cùng vuông óc với AC).
=> Tứ giác ADEB là hình bình hành (dhnb).
=> Giao điểm của 2 đường chéo BC và AE là trung điểm của mỗi đường (Tính chất hình bình hành).
Mà O là trung điểm của BC (gt).
=> O là trung điểm của AE.
=> 3 điểm A; O; E thẳng hàng (đpcm).