Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x+5=0\)
\(\Leftrightarrow4x=-5\)
\(\Leftrightarrow x=\frac{-5}{4}\)
Vậy....
\(6x+7=0\)
\(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\frac{-7}{6}\)
Vậy....
a) <=> 4x^3 - 12x^2 - x^2 + 3x + 6x - 18 = 0
<=> 4x^2 (x - 3) - x(x - 3) + 6(x - 3) = 0
<=> (x - 3)(4x^2 - x + 6) = 0
xét 2 th
. x - 3 = 0 <=> x = 3
. 4x^2 - x + 6 = 0
<=> 4x^2 + 2.(1/2)x + 1/4 + 23/4 = 0
<=> (4x + 1/2)^2 = -23/4
.... phần sau bạn tự làm nhé
vậy pt trên có nghiệm là ...
. mik bận nên chỉ làm như vậy thôi.. những ý sau thì tách tương tự
c) => x3 + 2x2 - 6x2 - 12x + 4x + 8 = 0
=> (x3 + 2x2) - (6x2 + 12x) + (4x + 8) = 0
=> x2. (x +2) - 6x. (x + 2) + 4.(x + 2) =0
=> (x +2).(x2 - 6x + 4) = 0
=> x+ 2 = 0 hoặc x2 - 6x + 4 = 0
+) x+ 2 =0 => x = -2
+) x2 - 6x + 4 = 0 => x2 - 2.x.3 + 9 - 5 = 0 => (x -3)2 = 5
=> x - 3 = \(\sqrt{5}\) hoặc x - 3 = - \(\sqrt{5}\)
=> x = 3 + \(\sqrt{5}\) hoặc x = 3 - \(\sqrt{5}\)
vậy...
Câu c : \(x^4-3x^3+2x^2-9x+9=0\)
<=>\(x^4-x^3-2x^3+2x^2-9x+9=0\)
<=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)-9\left(x-1\right)=0\)
<=>\(\left(x-1\right)\left(x^3-2x^2-9\right)=0\)
<=> \(x-1=0\) hoặc \(x^3-2x^2-9=0\)
Nếu x-1=0 <=> x=1
Nếu \(x^3-2x^2-9=0\)
<=> \(x^3-3x^2+x^2-9=0\)
<=>\(x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)=0\)
<=>\(\left(x-3\right)\left(x^2+x+3\right)=0\)
Vì \(x^2+x+3=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\) >0 nên x-3=0 <=> x=3
Vậy \(S=\left\{1;3\right\}\)
Câu b : \(x^2+\left(\frac{x}{x+1}\right)^2=\frac{5}{4}\)
<=> \(4x^2\left(x^2+2x+2\right)=5\left(x^2+2x+1\right)\)
<=> \(4x^4+8x^3+8x^2=5x^2+10x+5\)
<=>\(4x^4+8x^3+3x^2-10x-5=0\)
<=>\(4x^4-4x^3+12x^3-12x^2+15x^2-15x+5x-5=0\)
<=>\(\left(x-1\right)\left(4x^3+12x^2+15x+5\right)=0\)
<=>\(\left(x-1\right)\left(2x+1\right)\left(2x^2+5x+5\right)=0\)
<=>x=1 hoặc \(x=\frac{-1}{2}\)
Phương trình \(2x^2+5x+5=0\) Vô nghiệm
6ax2+4ax-9x-6 = 0
<=> ( 6ax2+4ax ) - ( 9x+6 ) = 0
<=> 2ax(3x+2) - 3(3x+2) = 0
<=> ( 2ax-3 )( 3x+2 ) = 0
<=> \(\left[{}\begin{matrix}2ax-3=0\\3x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}2ax=3\\3x=-2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2a}\\x=\frac{-2}{3}\end{matrix}\right.\)
a) \(ĐKXĐ:x\ne-1;x\ne-3;x\ne-8;x\ne-10\)
\(\frac{2}{x^2+4x+3}+\frac{5}{x^2+11x+24}+\frac{2}{x^2+18x+8x}=\frac{9}{52}\)
\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+10\right)\left(x+8\right)}-\frac{9}{52}=0\)
\(\Leftrightarrow\frac{104\left(x+10\right)\left(x+8\right)+260\left(x+1\right)\left(x+10\right)+104\left(x+1\right)\left(x+3\right)-9\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
Đoạn này cậu tự phân tích tử rồi rút gọn nhé :D Vì hơi dài nên viết ra đây sẽ rối, k đẹp mắt cho lắm :>
\(\Leftrightarrow\frac{-927x^2+1782x+9072-9x^4-198x^3}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
\(\Leftrightarrow\frac{-9\left(x^4+22x^3+103x^2-198x-1008\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
\(\Leftrightarrow\frac{-9\left(x^4-3x^3+25x^3-75x^{^2}+178x^2-534x+336x-1008\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
\(\Leftrightarrow\frac{-9\left[x^3\left(x-3\right)+25x^2\left(x-3\right)+178x\left(x-3\right)+336\left(x-3\right)\right]}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
\(\Leftrightarrow\frac{-9\left(x-3\right)\left(x^3+25x^2+178x+336\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
\(\Leftrightarrow\frac{-9\left(x-3\right)\left(x^3+14x^2+11x^2+154x+24x+336\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
\(\Leftrightarrow\frac{-9\left(x-3\right)\left[x^2\left(x+14\right)+11x\left(x+14\right)+24\left(x+14\right)\right]}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
\(\Leftrightarrow\frac{-9\left(x-3\right)\left(x+14\right)\left(x^2+11x+24\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)=0}\)
\(\Leftrightarrow\frac{-9\left(x+14\right)\left(x-3\right)\left(x+3\right)\left(x+8\right)}{52\left(x+1\right)\left(x+3\right)\left(x+8\right)\left(x+10\right)}=0\)
\(\Leftrightarrow\frac{-9\left(x+14\right)\left(x-3\right)}{52\left(x+1\right)\left(x+10\right)}=0\)
\(\Leftrightarrow-9x^2-99x+378=0\)
\(\Leftrightarrow x^2+11x-42=0\)
\(\Leftrightarrow\left(x+14\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+14=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-14\\x=3\end{cases}}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-14;3\right\}\)
b) \(ĐKXĐ:x\ne-1\)
\(x^2+\left(\frac{x}{x+1}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow x^2+\frac{x^2}{\left(x+1\right)^2}-\frac{5}{4}=0\)
\(\Leftrightarrow\frac{4x^2\left(x^2+2x+1\right)+4x^2-5\left(x^2+2x+1\right)}{\left(x+1\right)^2}=0\)
\(\Leftrightarrow4x^4+8x^3+4x^2+4x^2-5x^2-10x-5=0\)
\(\Leftrightarrow4x^2+8x^3+3x^2-10x-5=0\)
\(\Leftrightarrow4x^4+2x^3+6x^3+3x^2-10x-5=0\)
\(\Leftrightarrow2x^3\left(2x+1\right)+3x^2\left(2x+1\right)-5\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x^3+3x^2-5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x^3-2x^2+5x^2-5x+5x-5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left[2x^2\left(x-1\right)+5x\left(x-1\right)+5\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)\left(2x^2+5x+5\right)=0\)
\(\Leftrightarrow2x+1=0\)
hoặc \(x-1=0\)
hoặc \(2x^2+5x+5=0\)
\(\Leftrightarrow\) \(x=-\frac{1}{2}\left(tm\right)\)
hoặc \(x=1\left(tm\right)\)
hoặc \(\left(x+\frac{5}{4}\right)^2+\frac{55}{16}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{1}{2};1\right\}\)
c) \(x^4-3x^3+2x^2-9x+9=0\)
\(\Leftrightarrow x^4-x^3-2x^3+2x^2-9x+9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-2x^2\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-3x^2\right)+\left(x^2-9\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2+x+3\right)=0\)
\(\Leftrightarrow\)\(x-1=0\)
hoặc \(x-3=0\)
hoặc \(x^2+x+3=0\)
\(\Leftrightarrow\)\(x=1\left(tm\right)\)
hoặc \(x=3\left(tm\right)\)
hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là :\(S=\left\{1;3\right\}\)
\(ĐKXĐ:x\ne-1;x\ne-3;x\ne-8;x\ne-10\)
\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{5}{\left(x+3\right)\left(x+8\right)}+\frac{2}{\left(x+8\right)\left(x+10\right)}=\frac{9}{52}\)
\(\Leftrightarrow\frac{\left(x+3\right)-\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+8\right)-\left(x+3\right)}{\left(x+3\right)\left(x+8\right)}+\frac{\left(x+10\right)-\left(x+8\right)}{\left(x+8\right)\left(x+10\right)}\)
\(=\frac{9}{52}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+10}=\frac{9}{52}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+10}=\frac{9}{52}\)
\(\Leftrightarrow\frac{9}{\left(x+1\right)\left(x+10\right)}=\frac{9}{52}\)
\(\Leftrightarrow\left(x+1\right)\left(x+10\right)=52\)
\(\Leftrightarrow x^2+11x+10=52\)
\(\Leftrightarrow x^2+11x-42=0\)
\(\Delta=11^2+4.42=289,\sqrt{289}=17\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+17}{2}=3\\x=\frac{-11-17}{2}=-14\end{cases}}\)
Vậy pt có 2 nghiệm là 3 và -14
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2-3x+9-\frac{3}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow x^2+\frac{1}{x^2}-3\left(x+\frac{1}{x}\right)+9=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
pt trở thành: \(t^2-2-3t+9=0\)
\(\Leftrightarrow t^2-3t+7=0\) (vô nghiệm)
Vậy pt đã cho vô nghiệm
a. \(x^2-4x+3\le0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(3x-3\right)\le0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\left(Vo.li\right)\\\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(1\le x\le3\)
b. \(9x^2-6x\ge0\)
\(\Leftrightarrow3x\left(3x-2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\ge0\\3x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x\le0\\3x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(0\le x\le\frac{2}{3}\)
c. Câu c cậu tự làm nha, tớ đang có việc. Quy đồng lên rồi tính bình thường thôi.
\(4x^2-9x+23=0\)
\(\Leftrightarrow\left(2x\right)^2-2\cdot2x\cdot\frac{9}{4}+\frac{81}{16}+\frac{287}{16}=0\)
\(\Leftrightarrow\left(2x-\frac{9}{4}\right)^2=\frac{-287}{16}\)( vô lý )
Vậy pt vô nghiệm