Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{-7}{x^2+3x-10}+\dfrac{x+4}{x+5}+\dfrac{x+3}{x-2}+3=0\)
\(\Leftrightarrow-7+x^2+2x-8+x^2+8x+15+3x^2+9x-30=0\)
\(\Leftrightarrow5x^2+19x-30=0\)
hay \(x\in\left\{\dfrac{6}{5}\right\}\)
a)⇔ 2x-1/2 -1 = x2+x-3/x-1 - 5x-2/2.(x-1)
⇔ ( 2x-1 ).(x-1) - 2.(x-1)=2.(x2+x-3) - (5x-2)
⇔2x2-3x+1-2x+2=2x2+2x-6-5x+2
⇔2x2-3x+1-2x+2-2x2-2x+6+5x-2=0
⇔-2x+7=0
⇔x=7/2
Vậy ....
b) ⇔3.(x-1)2-(x-1).(x+1)=0
⇔ (x-1).(3x-3-x-1)=0
⇔ (x-1).(2x-4)=0
⇔x=1 hoặc x=2
Vậy....
c) ⇔ 4x2-4x+x-1=0
⇔4x(x-1)+(x-1)=0
⇔(x-1)(4x+1)=0
⇔x=1 hoặc x=-1/4
Vậy....
d) ⇔4x2-4x-3=0
⇔ 4x2-6x+2x-3 = 0
⇔ 2x( 2x-3)+(2x-3)=0
⇔ (2x+3)(2x+1)=0
⇔ x=-3/2 hoặc x=-1/2
vậy ....
\(a,\frac{2x-1}{2}-1=\frac{x^2+x-3}{x-1}-\frac{5x-2}{2-2x}ĐKXĐ:x\ne1\)
\(\left(2x-1\right)\left(x-1\right)\left(1-x\right)-2\left(x-1\right)\left(1-x\right)=2\left(x^2+x-3\right)\left(1-x\right)-\left(5x-2\right)\left(x-1\right)\)
\(7x^2-8x+3=-5x^2+15x-8\)
\(7x^2-8x+3+5x^2-15x+8=0\)
\(12x^2-23x+11=0\)
\(\left(12x-11\right)\left(x-1\right)=0\)
\(\left[{}\begin{matrix}12x=11\\x=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\frac{11}{12}\\x=1\end{matrix}\right.\)Theo ĐKXĐ => x= \(\frac{11}{12}\)
\(\left(5x-3\right)^2-\left(4x-7\right)^2=0\\ \Leftrightarrow25x^2-30x+9-\left(16x^2-56x+49\right)=0\\ \Leftrightarrow25x^2-30x+9-16x^2+56x-49=0\\ \Leftrightarrow9x^2+26x-40=0\\ \Leftrightarrow x=\dfrac{-26\pm\sqrt{26^2-4.9.\left(-40\right)}}{2.9}\\ \Leftrightarrow x=\dfrac{-26\pm\sqrt{676+1440}}{18}\\ \Leftrightarrow x=\dfrac{-26\pm\sqrt{2116}}{18}\\ \Leftrightarrow x=\dfrac{-26\pm46}{18}\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-26+46}{18}\\x=\dfrac{-26-46}{18}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{9}\\x=-4\end{matrix}\right.\)
Vậy ...
\(\left(5x-3\right)^2-\left(4x-7\right)^2=0\)
\(\Leftrightarrow\left(5x-3-4x+7\right)\left(5x-3+4x-7\right)=0\)
\(\Leftrightarrow\)\(\left(x+4\right)\left(9x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\9x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\9x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{10}{9}\end{matrix}\right.\)
\(5X\left(X-2020\right)+X=2020\)
\(\Leftrightarrow5X^2-10100X+X=2020\)
\(\Leftrightarrow5X^2-10099X=2020\)
\(\Leftrightarrow5X^2-10099X-2020=0\)
\(\Leftrightarrow5X^2-10100X+x-2020=0\)
\(\Leftrightarrow5X\left(X-2020\right)+X-2020=0\)
\(\Leftrightarrow\left(X-2020\right)\left(5X+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=-\frac{1}{5}\end{cases}}\)
\(4\left(x-5\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)\right]^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[2\left(x-5\right)-2x-1\right]\left[2\left(x-5\right)+2x+1\right]=0\)
\(\Leftrightarrow\left(2x-10-2x-1\right)\left(2x-10+2x+1\right)=0\)
\(\Leftrightarrow-11\left(4x-9\right)=0\)
\(\Leftrightarrow x=\frac{9}{4}\)
\(1.a.\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\\\Leftrightarrow 4x-3=x-12\\ \Leftrightarrow4x-x=3-12\\\Leftrightarrow 3x=-9\\ \Leftrightarrow x=-3\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3\right\}\)
\(b.\left(3x-1\right)\left(x-5\right)=\left(3x-1\right)\left(x+2\right)\\\Leftrightarrow x-5=x+2\\ \Leftrightarrow x-x=5+2\\ \Leftrightarrow0=7\left(sai\right)\)
\(\Rightarrow\) Vô nghĩa (Vô nghiệm)
\(c.x^2-5x+6=0\\\Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Rightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{3;2\right\}\)
a, \(\left(2x^2+1\right)\left(4x-3\right)=\left(2x^2+1\right)\left(x-12\right)\)
<=> \(\left(2x^2+1\right)\left(4x-3\right)-\left(2x^2+1\right)\left(x-12\right)=0\)
<=> \(\left(2x^2+1\right).\left(4x-3-x+12\right)=0\)
=> \(2x^2+1=0\) hoặc 3x + 9 = 0
=> \(2x^2=-1\) 3x = -9
=> \(x^2=\frac{-1}{2}\) ( vô lý ) x = -3
vậy phương trình có no S = -3
b , ( 3x -1) (2x - 5) = (3x - 1)(x +2)
=> (3x -1) ( 2x - 5) - (3x - 1)(x + 2)=0
=> ( 3x -1 ) ( 2x - 5 - x - 2) = 0
=> 3x - 1 = 0 và x - 7 = 0
x = \(\frac{-1}{3}\) x = 7
c, \(x^2-5x+6=0=>x^2-3x-2x+6=0\)
=> x.( x - 2) - 3.(x -2 ) =0
=> ( x - 3).(x -2) =0
x -3 = 0 và x -2 = 0
x = 3 x =2
câu a tự quy đồng cùng mẫu rồi làm thôi :"))
b) \(\left[x.\left(x-1\right)\right].\left[\left(x-2\right).\left(x+1\right)\right]=24\)
\(\Leftrightarrow\left(x^2-x\right).\left(x^2-x-2\right)=24\)
Đặt \(x^2-x=k\), ta có:
\(k.\left(k-2\right)=24\)
\(\Leftrightarrow k^2-2k+1=25\)
\(\Leftrightarrow\left(k-1\right)^2=5^2\Leftrightarrow\orbr{\begin{cases}k-1=5\\k-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}k=6\\k=-4\end{cases}}}\)
\(k=6\Rightarrow x^2-x=6\Rightarrow x^2-x-6=0\)
\(\Rightarrow x^2-3x+2x-6=0\Rightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\Rightarrow\left(x+2\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
\(k=-4\Rightarrow x^2-x+4=0\Rightarrow x^2-x+\frac{1}{4}+\frac{15}{4}=0\Rightarrow\left(x-\frac{1}{2}\right)^2=-\frac{15}{4}\left(\text{loại}\right)\)
c)\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+2x^2+4x+3x^2-12=0\)
\(\Leftrightarrow x^3.\left(x+2\right)+2x.\left(x+2\right)+3.\left(x^2-2^2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left[x^2.\left(x-1\right)+x.\left(x-1\right)+6.\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-1\right).\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}\text{vì }x^2+x+6>0\left(\text{tự c/m}\right)}\)
p/s: bn tự kết luận nha :))