Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\\\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^2\\\Leftrightarrow \left(x+1\right)^2-4\left(x-1\right)^2=0\\\Leftrightarrow \left(x+1\right)^2-\left(2x-2\right)^2=0\\\Leftrightarrow \left[\left(x+1\right)+\left(2x-2\right)\right]\left[\left(x+1\right)-\left(2x-2\right)\right] =0\\ \Leftrightarrow\left(x+1+2x-2\right)\left(x+1-2x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(3-x\right)=0\\\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{3};3\right\}\)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left[\left(2x+7\right)+\left(3x+6\right)\right]\left[\left(2x+7\right)-\left(3x+6\right)\right]=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+13=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-13}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-13}{5};1\right\}\)
\(4\left(2x+7\right)^2=9\left(x+3\right)^2\\\Leftrightarrow 4\left(2x+7\right)^2-9\left(x+3\right)=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\\Leftrightarrow \left[\left(4x+14\right)+\left(3x+9\right)\right]\left[\left(4x+14\right)-\left(3x+9\right)\right]=0\\\Leftrightarrow \left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\\Leftrightarrow \left(7x+23\right)\left(x+5\right)=0\\\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-23}{7};-5\right\}\)
a. \(x^2-4x+3\le0\)
\(\Leftrightarrow\left(x^2-x\right)-\left(3x-3\right)\le0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)\le0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\left(Vo.li\right)\\\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(1\le x\le3\)
b. \(9x^2-6x\ge0\)
\(\Leftrightarrow3x\left(3x-2\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\ge0\\3x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x\le0\\3x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(0\le x\le\frac{2}{3}\)
c. Câu c cậu tự làm nha, tớ đang có việc. Quy đồng lên rồi tính bình thường thôi.
a. \(3x^2+2-1=0\)
\(\text{⇔}3x^2+1=0\)
\(\text{⇔}3x^2=-1\)
\(\text{⇔}x^2=\frac{-1}{3}\) (Vô lí)
Vậy phương trình trên vô nghiệm.
b. \(x^2-3x+2=0\)
\(\text{⇔}x^2-x-2x+2=0\)
\(\text{⇔}x\left(x-1\right)-2\left(x-1\right)=0\)
\(\text{⇔}\left(x-1\right)\left(x-2\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;2\right\}\).
c. \(x^2-4x+3=0\)
\(\text{⇔}x^2-x-3x+3=0\)
\(\text{⇔}x\left(x-1\right)-3\left(x-1\right)=0\)
\(\text{⇔}\left(x-1\right)\left(x-3\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\).
d. \(x^2+6x-16=0\)
\(\text{⇔}x^2-2x+8x-16=0\)
\(\text{⇔}x\left(x-2\right)+8\left(x-2\right)=0\)
\(\text{⇔}\left(x-2\right)\left(x+8\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{2;-8\right\}\).
Chúc bạn học tốt@@
a) \(5x\left(3x-7\right)-15x\left(x-1\right)=3\)
\(\Rightarrow15x^2-35x-15x^2+15x=3\)
\(\Rightarrow-20x=3\)
\(\Rightarrow x=-\dfrac{3}{20}\)
b) \(\left(4x+2\right)\left(6x-3\right)-\left(8x+5\right)\left(3x-4\right)=2\)
\(\Rightarrow24x^2+12x-12x-6-24x^2-15x+24x+20=2\)
\(\Rightarrow9x+14=2\)
\(\Rightarrow9x=-12\)
\(\Rightarrow x=-\dfrac{4}{3}\)
c) \(7x^2-21x=0\)
\(\Rightarrow7x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}7x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(9x^2-6x+1=0\)
\(\Rightarrow\left(3x\right)^2-2.3x+1=0\)
\(\Rightarrow\left(3x-1\right)^2=0\)
\(\Rightarrow3x-1=0\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\dfrac{1}{3}\)
e) \(16x^2-49=0\)
\(\Rightarrow\left(4x\right)^2-7^2=0\)
\(\Rightarrow\left(4x-7\right)\left(4x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-7=0\\4x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=7\\4x=-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{4}\\x=-\dfrac{7}{4}\end{matrix}\right.\)
f) \(5x^3-20x=0\)
\(\Rightarrow5x\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0\\x^2-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x^2=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)
8x2 - 4x = 0
=> 4x ( 2x - 1 ) = 0
<=>\(\orbr{\begin{cases}4x=0\\2x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
KL. Tập Ngiệm của pt ............
tự làm nốt
8x2-4x=0
=>4x.2x-4x=0
=>4x.(2x-1)=0
=>4x=0 hoặc 2x-1 =0
x =0:4 2x =0+1
x =0 2x =1
x =1:2=0,5
Vậy x\(\in\){0;0,5}
b)-6x+9x2=0
-3x.2+3x.3x.3=0
=>3x.(-2+1.3x+3)=0
=>3x=0 hoặc -2+1.3x+3=0
x =0:3 3x+3 =0+2
x =0 3x+3 =2
3x =2-3
3x =-1
x =\(\frac{-1}{3}\)
Vậy x\(\in\){0;\(\frac{-1}{3}\)}
4x2=3x
=>4x2-3x=0
=>x.(4x-3)=0
=>x=0 hoặc 4x-3=0
x=0 4x =0+3
4x =3
x =\(\frac{3}{4}\)
Vậy x\(\in\){0;\(\frac{3}{4}\)}
Các phần khác bạn làm tương tự nha
Chúc bn học tốt
a. \(x^2+3x+5\)
\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
=> đpcm
f, 3x2+4x-4=0
\(\Leftrightarrow\)3x2+6x-2x-4=0
\(\Leftrightarrow\)3x(x+2)-2(x+2)=0
\(\Leftrightarrow\)(x+2)(3x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)
Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)
a) Ta có : x3 - x = 0
=> x(x2 - 1) = 0
=> \(\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{0;1;-1\right\}\)
b) x2 + 4x = 0
=> x(x + 4) = 0
=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)
Vậy \(x\in\left\{0;-4\right\}\)
c) 9x2 - 1 = 0
=> 9x2 = 1
=> x2 = \(\frac{1}{9}\)
=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{3};-\frac{1}{3}\right\}\)
d) 5x2 - 10x + 5 = 0
=> 5x2 - 5x - 5x + 5 = 0
=> 5x(x - 1) - 5(x - 1) = 0
=> 5(x - 1)2 = 0
=> (x - 1)2 = 0
=> x - 1 = 0
=> x = 1
e) x2 + 6x + 5 = 0
=> x2 + 6x + 9 - 4 = 0
=> (x + 3)2 = 4
=> \(\orbr{\begin{cases}x+3=2\\x+3=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}\)
Vậy \(x\in\left\{-1;-5\right\}\)
\(4x+5=0\)
\(\Leftrightarrow4x=-5\)
\(\Leftrightarrow x=\frac{-5}{4}\)
Vậy....
\(6x+7=0\)
\(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\frac{-7}{6}\)
Vậy....