K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Lời giải:

ĐKXĐ: \(x\geq \frac{-1}{16}\)

PT \(\Leftrightarrow x^2-x-2\sqrt{16x+1}-2=0\)

\(\Leftrightarrow (x^2-x-20)-2(\sqrt{16x+1}-9)=0\)

\(\Leftrightarrow (x-5)(x+4)-2.\frac{16x+1-81}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow (x-5)(x+4)-\frac{32(x-5)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow (x-5)\left[x+4-\frac{32}{\sqrt{16x+1}+9}\right]=0(1)\)

Ta thấy:

Với mọi \(x\geq \frac{-1}{16}\Rightarrow \left\{\begin{matrix} x+4\geq \frac{63}{16}>3,6\\ \frac{32}{\sqrt{16x+1}+9}\leq \frac{32}{9}<3,6\end{matrix}\right.\)

\(\Rightarrow x+4>\frac{32}{\sqrt{16x+1}+9}\Rightarrow x+4-\frac{32}{\sqrt{16x+1}+9}>0(2)\)

Từ \((1);(2)\Rightarrow x-5=0\Rightarrow x=5\) là nghiệm duy nhất.

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

ĐKXĐ: \(x\geq \frac{-1}{16}\)

PT \(\Leftrightarrow x^2-x-2\sqrt{16x+1}-2=0\)

\(\Leftrightarrow (x^2-x-20)-2(\sqrt{16x+1}-9)=0\)

\(\Leftrightarrow (x-5)(x+4)-2.\frac{16x+1-81}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow (x-5)(x+4)-\frac{32(x-5)}{\sqrt{16x+1}+9}=0\)

\(\Leftrightarrow (x-5)\left[x+4-\frac{32}{\sqrt{16x+1}+9}\right]=0(1)\)

Ta thấy:

Với mọi \(x\geq \frac{-1}{16}\Rightarrow \left\{\begin{matrix} x+4\geq \frac{63}{16}>3,6\\ \frac{32}{\sqrt{16x+1}+9}\leq \frac{32}{9}<3,6\end{matrix}\right.\)

\(\Rightarrow x+4>\frac{32}{\sqrt{16x+1}+9}\Rightarrow x+4-\frac{32}{\sqrt{16x+1}+9}>0(2)\)

Từ \((1);(2)\Rightarrow x-5=0\Rightarrow x=5\) là nghiệm duy nhất.

2 tháng 3 2018

tự làm đi

31 tháng 10 2018

Bài này mà lớp 6 á? Chết luôn.

\(x^{x^x}=2\)( vô nghiệm )

Lời giải : Nguồn : Brainchild 

Để \(x^{x^x}=2\)suy ra Mũ của x phải bằng 2 

Nên : \(x^2=2\Rightarrow x=\pm\sqrt{2}\)

16 tháng 5 2020

cảm ơn bạn nha

1 tháng 3 2023

ĐKXĐ: `{(x+1>0),(x ne0):} <=> {(x> -1),(x ne 0):}`

`2/(sqrt(x+1))+1/(x sqrt(x+1)) =1/x`

`<=>(2x+1)/(x sqrt(x+1)) =1/x`

`<=>x(2x+1)=x sqrt(x+1)`

`<=>2x+1=sqrt(x+1)`

`=>(2x+1)^2=x+1`

`<=>4x^2+4x+1=x+1`

`<=>4x^2+3x=0`

`<=>x(4x+3)=0`

`<=>[(x=0\ (KTM)),(x=-3/4):}`

Thay `x=-3/4` vào PT ban đầu `=>` Không thỏa mãn.

Vậy phương trình vô nghiệm.

1 tháng 3 2023

!!!

1 tháng 3 2023

ĐKXĐ: `x-1 >0 <=>x>1`

`(x^2-4x+3)/(sqrt(x-1))=sqrt(x-1)`

`<=>x^2-4x+3=x-1`

`<=>x^2-5x+4=0`

`<=>x^2-x-4x+4=0`

`<=>x(x-1)-4(x-1)=0`

`<=>(x-4)(x-1)=0`

`<=> [(x=4\ (TM)),(x=1\ (KTM)):}`

``

Vậy `S={4}`.

1 tháng 3 2023

mik có sửa lại

bạn tải lại trang nhé

17 tháng 10 2020

a) \(sin\left(x\right)=\frac{2}{3}\)

\(x=\arcsin \left(\frac{2}{3}\right)+2\pi n,\:x=\pi -\arcsin \left(\frac{2}{3}\right)+2\pi n\)

b) \(sin\left(x\right)=\frac{\sqrt{3}}{2}\)

\(x=\frac{\pi }{3}+2\pi n,\:x=\frac{2\pi }{3}+2\pi n\)

26 tháng 11 2016

lớp 6 mà giải phương trình đâu ra vậy cha

23 tháng 12 2016

Biến đổi phương trình trở thành

\(x^4+2x^2+1=5x^2+10x+5\)

\(\Leftrightarrow\left(x^2+1\right)^2=5\left(x+1\right)^2\)

\(\Leftrightarrow\begin{cases}x^2+1=\sqrt{5}\left(x+1\right)\left(1\right)\\x^2+1=-\sqrt{5}\left(x+1\right)\left(2\right)\end{cases}\)

Giải (1) cho ta \(x=\frac{\sqrt{5}\pm\sqrt{1+4\sqrt{5}}}{2}\)

Phương trình (2) vô nghiệm ( vì \(\Delta< 0\) )

Vậy nghiệm của phương trình đã cho là :

\(x=\frac{\sqrt{5}\pm\sqrt{1+4\sqrt{5}}}{2}\)

2 tháng 3 2023

\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\dfrac{3}{2}x-3\)

\(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)

Đặt \(t=\sqrt{2x^2-1}\left(t\ge0\right)\)  \(\left(1\right)\) nên ta có phương trình:

\(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)

Ta có: \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=\left(x-3\right)^2\)

⇒ Phương trình có hai nghiệm phân biệt

\(t_1=\dfrac{2x-1}{2}\)

\(t_2=\dfrac{x+2}{2}\)

Thay lần lượt các giá trị của t vào (1) nên: \(x\in\left\{\dfrac{-1+\sqrt{6}}{2};\dfrac{2+\sqrt{60}}{7}\right\}\)