Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{x^x}=2\)( vô nghiệm )
Lời giải : Nguồn : Brainchild
Để \(x^{x^x}=2\)suy ra Mũ của x phải bằng 2
Nên : \(x^2=2\Rightarrow x=\pm\sqrt{2}\)
ĐKXĐ: `{(x+1>0),(x ne0):} <=> {(x> -1),(x ne 0):}`
`2/(sqrt(x+1))+1/(x sqrt(x+1)) =1/x`
`<=>(2x+1)/(x sqrt(x+1)) =1/x`
`<=>x(2x+1)=x sqrt(x+1)`
`<=>2x+1=sqrt(x+1)`
`=>(2x+1)^2=x+1`
`<=>4x^2+4x+1=x+1`
`<=>4x^2+3x=0`
`<=>x(4x+3)=0`
`<=>[(x=0\ (KTM)),(x=-3/4):}`
Thay `x=-3/4` vào PT ban đầu `=>` Không thỏa mãn.
Vậy phương trình vô nghiệm.
ĐKXĐ: `x-1 >0 <=>x>1`
`(x^2-4x+3)/(sqrt(x-1))=sqrt(x-1)`
`<=>x^2-4x+3=x-1`
`<=>x^2-5x+4=0`
`<=>x^2-x-4x+4=0`
`<=>x(x-1)-4(x-1)=0`
`<=>(x-4)(x-1)=0`
`<=> [(x=4\ (TM)),(x=1\ (KTM)):}`
``
Vậy `S={4}`.
a) \(sin\left(x\right)=\frac{2}{3}\)
\(x=\arcsin \left(\frac{2}{3}\right)+2\pi n,\:x=\pi -\arcsin \left(\frac{2}{3}\right)+2\pi n\)
b) \(sin\left(x\right)=\frac{\sqrt{3}}{2}\)
\(x=\frac{\pi }{3}+2\pi n,\:x=\frac{2\pi }{3}+2\pi n\)
Biến đổi phương trình trở thành
\(x^4+2x^2+1=5x^2+10x+5\)
\(\Leftrightarrow\left(x^2+1\right)^2=5\left(x+1\right)^2\)
\(\Leftrightarrow\begin{cases}x^2+1=\sqrt{5}\left(x+1\right)\left(1\right)\\x^2+1=-\sqrt{5}\left(x+1\right)\left(2\right)\end{cases}\)
Giải (1) cho ta \(x=\frac{\sqrt{5}\pm\sqrt{1+4\sqrt{5}}}{2}\)
Phương trình (2) vô nghiệm ( vì \(\Delta< 0\) )
Vậy nghiệm của phương trình đã cho là :
\(x=\frac{\sqrt{5}\pm\sqrt{1+4\sqrt{5}}}{2}\)
\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\dfrac{3}{2}x-3\)
\(\Leftrightarrow2\left(3x+1\right)\sqrt{2x^2-1}=10x^2+3x-6\)
Đặt \(t=\sqrt{2x^2-1}\left(t\ge0\right)\) \(\left(1\right)\) nên ta có phương trình:
\(4t^2-2\left(3x+1\right)t+2x^2+3x-2=0\)
Ta có: \(\Delta'=\left(3x+1\right)^2-4\left(2x^2+3x-2\right)=\left(x-3\right)^2\)
⇒ Phương trình có hai nghiệm phân biệt
\(t_1=\dfrac{2x-1}{2}\)
\(t_2=\dfrac{x+2}{2}\)
Thay lần lượt các giá trị của t vào (1) nên: \(x\in\left\{\dfrac{-1+\sqrt{6}}{2};\dfrac{2+\sqrt{60}}{7}\right\}\)
Lời giải:
ĐKXĐ: \(x\geq \frac{-1}{16}\)
PT \(\Leftrightarrow x^2-x-2\sqrt{16x+1}-2=0\)
\(\Leftrightarrow (x^2-x-20)-2(\sqrt{16x+1}-9)=0\)
\(\Leftrightarrow (x-5)(x+4)-2.\frac{16x+1-81}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow (x-5)(x+4)-\frac{32(x-5)}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow (x-5)\left[x+4-\frac{32}{\sqrt{16x+1}+9}\right]=0(1)\)
Ta thấy:
Với mọi \(x\geq \frac{-1}{16}\Rightarrow \left\{\begin{matrix} x+4\geq \frac{63}{16}>3,6\\ \frac{32}{\sqrt{16x+1}+9}\leq \frac{32}{9}<3,6\end{matrix}\right.\)
\(\Rightarrow x+4>\frac{32}{\sqrt{16x+1}+9}\Rightarrow x+4-\frac{32}{\sqrt{16x+1}+9}>0(2)\)
Từ \((1);(2)\Rightarrow x-5=0\Rightarrow x=5\) là nghiệm duy nhất.
Lời giải:
ĐKXĐ: \(x\geq \frac{-1}{16}\)
PT \(\Leftrightarrow x^2-x-2\sqrt{16x+1}-2=0\)
\(\Leftrightarrow (x^2-x-20)-2(\sqrt{16x+1}-9)=0\)
\(\Leftrightarrow (x-5)(x+4)-2.\frac{16x+1-81}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow (x-5)(x+4)-\frac{32(x-5)}{\sqrt{16x+1}+9}=0\)
\(\Leftrightarrow (x-5)\left[x+4-\frac{32}{\sqrt{16x+1}+9}\right]=0(1)\)
Ta thấy:
Với mọi \(x\geq \frac{-1}{16}\Rightarrow \left\{\begin{matrix} x+4\geq \frac{63}{16}>3,6\\ \frac{32}{\sqrt{16x+1}+9}\leq \frac{32}{9}<3,6\end{matrix}\right.\)
\(\Rightarrow x+4>\frac{32}{\sqrt{16x+1}+9}\Rightarrow x+4-\frac{32}{\sqrt{16x+1}+9}>0(2)\)
Từ \((1);(2)\Rightarrow x-5=0\Rightarrow x=5\) là nghiệm duy nhất.