K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

Điều kiện \(x\ge0.\)  Phương trình tương đương với (chuyển vế, bình phương)

\(\left(\sqrt{x}+\sqrt{x+9}\right)^2=\left(\sqrt{x+1}+\sqrt{x+4}\right)^2\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x+5+2\sqrt{x^2+5x+4}\)

\(\Leftrightarrow\left(2+\sqrt{x^2+9x}\right)^2=x^2+5x+4\Leftrightarrow4+4\sqrt{x^2+9x}+x^2+9x=x^2+5x+4\)

\(\Leftrightarrow4x+4\sqrt{x^2+9x}=0\)

\(x\ge0\)  nên vế trái luôn không âm. Do đó để có dấu bằng thì \(x=0\) (thỏa mãn).

Vậy phương trình có nghiệm duy nhất \(x=0\).


 

17 tháng 11 2017

 Câu trả lời hay nhất:  Hình như đề bài này phải là : √(x+4)+√(x-4)+12-2x=2√(x^2-16) ak? 
Nếu đúng như t viết thì làm như sau 

Đặt √(x+4) + √(x-4) = t ( với t> = 0) 
=> ( √(x+4) +√(x-4) ) ^2 = t^2 
<=> 2x + 2√(x+4)(x-4) = t^2 
<=>2x + 2 √(x^2-16) = t^2 (**) 
pt tương đương với 
t+12 = t^2 
<=> t^2 -t -12 =0 
<=> t=4 hoặc t= -3 ( loại vì t> = 0) 

t= 4 thay vào (**) ta đc 

2x+ 2√(x^2-16) = 4^2 
<=> x + √(x^2-16) = 8 
<=> √(x^2-16) = 8-x 
<=> x^2 -16 = (8-x)^2 ( với x< =8 ) 
<=> x^2 -16 = 64 -16x + x^2 
<=> 16x = 80 
<=> x = 5 ( thỏa mãn ) 
vậy nghiệm pt là x= 5

____________Xuân Toàn ____________

16 tháng 7 2018

đk: \(x\ge4\)

\(\Leftrightarrow\sqrt{x}+\sqrt{x+9}=\sqrt{x-1}+\sqrt{x-4}\)

\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x-5+2\sqrt{x^2-5x+4}\)

\(\Leftrightarrow14+2\sqrt{x^2+9x}=2\sqrt{x^2-5x+4}\)

\(\Leftrightarrow7+\sqrt{x^2+9x}=\sqrt{x^2-5x+4}\)

\(\Leftrightarrow49+14\sqrt{x^2+9x}+x^2+9x=x^2-5x+4\)

\(\Leftrightarrow14\sqrt{x^2+9x}=-14x-45\)

\(\Leftrightarrow\hept{\begin{cases}196\left(x^2+9x\right)=196x^2+1260x+2025\\-14x-45\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}504x=2025\\x\le\frac{-45}{14}\end{cases}}\Leftrightarrow x=\frac{225}{56}\) (loại)

=> pt vô nhiệm

7 tháng 9 2019

ĐK: \(x\ge4\)

PT \(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{x-1}}+\frac{13}{\sqrt{x+9}+\sqrt{x+4}}=0\)

Đến đây thấy ngay pt vô nghiệm.

True?

7 tháng 9 2019

Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath

29 tháng 7 2021

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

9 tháng 7 2019

\(\sqrt{25x^2-10x+1}=4x+9\)

\(\Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x+9\)

\(\Leftrightarrow\left|5x-1\right|=4x+9\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=4x+9\\5x-1=-4x-9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-\frac{8}{9}\end{cases}}}\)

Vậy ... 

9 tháng 7 2019

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}-\sqrt{x+1}=0\)

\(\Leftrightarrow\sqrt{x+1}.\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)

Vậy ...

9 tháng 10 2020

\(pt\Leftrightarrow\sqrt{\left(x^4-9\right)+\left(x^3-3x\right)}+\sqrt{\left(x^4-9\right)+\left(2x^3-6x\right)}+\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{\left(x^2-3\right)\left(x^2+x+3\right)}+\sqrt{\left(x^2-3\right)\left(x^2+2x+3\right)}+\sqrt{x^2-3}=0\)

\(\Leftrightarrow\sqrt{x^2-3}\left(\sqrt{x^2+x+3}+\sqrt{x^2+2x+3}+1\right)=0\)

\(\text{Nếu }x=\pm\sqrt{3}\Rightarrow\text{thỏa mãn còn lại thì thừa số số 2}>0\text{ nên không thỏa}\)

11 tháng 8 2018

a,\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}\) \(^2\)\(=0\)

 \(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x+3\right)}+x-3=0\)

 \(\Leftrightarrow\)\(x=3\)

b, \(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

    \(\Leftrightarrow\)\(x-1+x-2=3\)

   \(\Leftrightarrow\)\(2x=6\)

   \(\Leftrightarrow\)\(x=3\)

Nhớ k nhé

12 tháng 8 2018

mình viết thừa số 2 ở dòng 1 phần a 

14 tháng 8 2017

Phương trình vô nghiệm. ĐK x>0 thì so sánh từng phần tử thấy vế phải luôn lớn hơn vế trái 

24 tháng 7 2017

a)\(pt\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\Rightarrow x=3\)  pt trong ngoặc vô nghiệm

b)\(pt\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x^2-4\right)=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{1}{\sqrt{x^2-4}}-1\right)=0\)

\(\Rightarrow x=\pm2;\frac{1}{\sqrt{x^2-4}}-1=0\)

\(\Rightarrow x^2=5\Rightarrow x=\pm\sqrt{5}\)

Vậy no pt là x=±2;x=± căn 5