Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{2x-3y}{2y-5}=\frac{3x+1}{3y-4}\left(1\right)\\2\left(x-3\right)-3\left(y+2\right)=-16\left(2\right)\end{cases}}\)
Nhân chéo và chuyển vế phương trình (1) và nhân phân phối, chuyển vế phương trình (2), ta được:
\(\hept{\begin{cases}7x-11y=-17\\2x-3y=-4\end{cases}}\)
<=>\(\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Đkiện: x <1 hoặc x \(\ge\frac{3}{2}\)
\(\sqrt{\frac{2x-3}{x-1}}=2\) (1)
(1) => \(\frac{2x-3}{x-1}=4\)
=> 2x - 3 = 4x - 4
<=> 2x - 4x = -4 + 3
<=> -2x = -1
<=> x = \(\frac{1}{2}\)( TMĐK)
Vậy x = \(\frac{1}{2}\)
b, Đkiện: x \(\ge\frac{3}{2}\)
(1) => \(\sqrt{2x-3}=2\sqrt{x-1}\)
=>2x - 3 = 4(x - 1)
<=> 2x -3 = 4x -4
<=> -2x = -1
<=> x = \(\frac{1}{2}\)(ko TMĐK)
Vậy pt vô nghiệm
\(18x^2-2x-\frac{17}{3}+9\sqrt{x-\frac{1}{3}}=0\)
Điều kiện: \(x\ge\frac{1}{3}\)
Đặt \(\sqrt{x-\frac{1}{3}}=a\left(a\ge0\right)\)
\(\Rightarrow x=a^2+\frac{1}{3}\)
Ta suy ra phương trình tương đương với
\(18\left(a^2+\frac{1}{3}\right)^2-2\left(a^2+\frac{1}{3}\right)-\frac{17}{3}+9a=0\)
\(\Leftrightarrow54a^4+30a^2+27a-13=0\)
\(\Leftrightarrow\left(3a-1\right)\left(18a^3+6a^2+12a+13\right)=0\)
Dễ thấy \(18a^3+6a^2+12a+13>0\) vì \(a\ge0\)
\(\Rightarrow3a-1=0\)
\(\Leftrightarrow a=\frac{1}{3}\)
\(\Leftrightarrow\sqrt{x-\frac{1}{3}}=\frac{1}{3}\)
\(\Leftrightarrow x-\frac{1}{3}=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{4}{9}\)
ta có \(y^2-2y+3=\left(y-1\right)^2+2>=2\) (1)
mặt khác ta có \(x^2+2x+4=\left(x+1\right)^2+3>=3\) => \(\frac{6}{x^2+2x+4}< =\frac{6}{3}=2\) (2)
từ (1) (2) => VT=VP=2<=> \(\hept{\begin{cases}y=1\\x=-1\end{cases}}\)