K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0 
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0 
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7 
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên). 
ta có pt: 
(x + u)^2 + u^2 + u = 7 
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**) 
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4 
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4. 
*nếu (x + u)^2 = 0 
(**) => (u + 1/2)^2 = 7 + 1 / 4 
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên 
*nếu (x + u)^2 = 4 
(**) => (u + 1/2)^2 = 3 + 1 / 4 
=> u^2 + u - 3 = 0 không có nghiệm nguyên. 
*nếu (x + u)^2 = 1 
(**) => (u + 1/2)^2 = 6 + 1 / 4 
=> u^2 + u - 6 = 0 
=> u = - 3 hoặc u = 2 
+ với u = -3 => y = - 3 - 2 = - 5 
có: (x - 3)^2 = 1 
=> x - 3 = -1 hoặc x - 3 = 1 
=> x = 2 hoặc x = 4 
+ với u = 2 => y = 0 
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1 
=> x = - 3 hoặc x = -1 
tóm lại pt có các nghiệm nguyên (x, y) là: 
(2, - 5), (4, - 5), (- 3, 0), (-1, 0) 

Thông cảm nha tại tớ làm chi tiết nên bị dài

x^2 + 2y^2 + 2xy + 4x + 9y + 3 = 0 
<=> x^2 + y^2 + 4 + 2xy + 4x + 4y + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 5y - 1 = 0 
<=> (x + y + 2)^2 + y^2 + 4y + 4 + y - 5 = 0 
<=> (x + y + 2)^2 + (y + 2)^2 + y + 2 = 7 
để gọn trong việc trình bài ta đặt u = y + 2 (với u nguyên). 
ta có pt: 
(x + u)^2 + u^2 + u = 7 
<=> (x + u)^2 + (u + 1/2)^2 = 7 + 1 / 4 (**) 
từ (**) ta thấy: 0 ≤ (x + u)^2 ≤ 7 + 1 / 4 
vì (x + u) là số nguyên nên (x + u)^2 chỉ có thể nhận các giá trị là: 0, 1, 4. 
*nếu (x + u)^2 = 0 
(**) => (u + 1/2)^2 = 7 + 1 / 4 
=> u^2 + u - 7 = 0 pt này không có nghiệm nguyên 
*nếu (x + u)^2 = 4 
(**) => (u + 1/2)^2 = 3 + 1 / 4 
=> u^2 + u - 3 = 0 không có nghiệm nguyên. 
*nếu (x + u)^2 = 1 
(**) => (u + 1/2)^2 = 6 + 1 / 4 
=> u^2 + u - 6 = 0 
=> u = - 3 hoặc u = 2 
+ với u = -3 => y = - 3 - 2 = - 5 
có: (x - 3)^2 = 1 
=> x - 3 = -1 hoặc x - 3 = 1 
=> x = 2 hoặc x = 4 
+ với u = 2 => y = 0 
có: (x + 2)^2 = 1 => x + 2 = - 1 hoặc x + 2 = 1 
=> x = - 3 hoặc x = -1 
tóm lại pt có các nghiệm nguyên (x, y) là: 
(2, - 5), (4, - 5), (- 3, 0), (-1, 0) 

24 tháng 6 2019

\(2x^4-2x^2y+y^2-64=0.\)

\(x^4+x^4-2x^2y+y^2-64=0.\)

\(\left(x^4-2x^2y+y^2\right)+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4=64.\)

Có \(\left(x^2-y\right)^2\ge0\)

mafk \(\left(x^2-y\right)^2+x^4=64.\)

\(\Rightarrow x^4\le64.\)

\(\Rightarrow x^2\le8\)

Từ đó xét tiếp 

9 tháng 3 2023

Là có giải ko mẹ🥰🙏

18 tháng 1 2019

a){x^2} + {y^2} + xy + 3x - 3y + 9 = 0

2{x^2} + 2{y^2} + 2xy + 6x - 6y + 18 = 0

({x^2} + 2xy + {y^2}) + ({x^2} + 6x + 9) + ({y^2} - 6y + 9) = 0

{(x + y)^2} + {(x + 3)^2} + {(y - 3)^2} = 0

\Rightarrow x + y = 0;x + 3 = 0;y - 3 = 0

\Rightarrow x =  - 3;y = 3

b ) x2 - 4x - 2y + xy + 1 = 0

( x2 - 4x + 4 ) - y ( 2 - x ) -3 = 0

( x - 2 )2 - y ( 2 - x ) = 3

( 2 - x ) ( 2 - x - y ) = 3

đến đây lập bảng tìm ra x,y

18 tháng 1 2019

a) x2 + y2 + xy + 3x - 3y + 9 = 0

2x2 + 2y2 + 2xy + 6x - 6y + 18 = 0

( x2 + 2xy + y2 ) + ( x2 + 6x + 9 ) + ( y2 - 6y + 9 ) = 0

( x + y )2 + ( x + 3 )2 + ( y - 3 )2 = 0

\(\Rightarrow\)( x + y )2 = ( x + 3 )2 = ( y - 3 )2 = 0

\(\Rightarrow\)x = -3 ; y = 3

6 tháng 6 2017

\(x^2-2x\left(y+1\right)+\left(y+1\right)^2=-y^2+5y+1\)

\(\left(x-y-1\right)^2=-y^2+5y+1\ge0\)

y\(\in\){0;1;2;3;4;5}

+y=0 => (x-1)2=1=> x=0 hoặc x =2

+y =1 => (x-2)2 =5 loại

+y=2 => (x-3)2 =7 loại

+ y =3 => (x-4)2 =7 loại

+y=4 => (x-5)2 =5 loại

+ y=5 => (x-6)2 = 1 => x =7 hoặc x=5

Vậy (x;y) là (0;0); (2;0) ;(5;5);(7;5).

20 tháng 11 2017

thiếu đề bài

20 tháng 11 2017

ta có vt = (x - y)2 + ( x + x )+z = 12

ta có chính phương <= 12 là các số 1,4,9 ta tháy bộ 3 số chính phương cọng lại bằng 12  chỉ co ( 4 , 4 ,4 ) vậy ta có hệ

( x - y )= z2 =4

pần còn lại bạn tự giải nha