Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Cô si cho 2 số dương ta đc:
\(2\sqrt{4a\left(3a+b\right)}\le4a+\left(3a+b\right)=7a+b\)
Tương tự: \(2\sqrt{4b\left(3b+a\right)}\le4b+\left(3b+a\right)=7b+a\)
\(\Rightarrow2\sqrt{4a\left(3a+b\right)}+2\sqrt{4b\left(3b+a\right)}\le8\left(a+b\right)\)
\(\Leftrightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\)
\(\Leftrightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4a=3a+b\\4b=3b+a\\a,b>0\end{cases}}\Leftrightarrow a=b>0\)
Giải HPT:
\(\hept{\begin{cases}x+y-z=c\\y+z-x=a\\z+x-y=b\end{cases}\Leftrightarrow\hept{\begin{cases}2y=c+a\\2z=a+b\\2x=b+c\end{cases}\Leftrightarrow}}\hept{\begin{cases}y=\frac{c+a}{2}\\x=\frac{a+b}{2}\\x=\frac{b+c}{2}\end{cases}}\)
1 ) Áp dụng BĐT Cauchy :
\(2\sqrt{a\left(3a+b\right)}=\sqrt{4a\left(3a+b\right)}\le\frac{4a+3a+b}{2}\)
Tương tự \(2\sqrt{b\left(3b+a\right)}\le\frac{4b+3b+a}{2}\)
\(\Rightarrow2\left(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\right)\le\frac{8a+8b}{2}=4\left(a+b\right)\)
\(\Rightarrow\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}\le2\left(a+b\right)\)
\(\Rightarrow\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{a+b}{2\left(a+b\right)}=\frac{1}{2}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b>0\)
xin lỗi nha MÌNH sai đề ở chổ \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Bấm máy tính Casio fx-570 VN giải hệ phương trình 3 ẩn
Mode\(\rightarrow\) 5\(\rightarrow\) 2 :
Hệ số | a | b | c | d |
PT 1 | 1 | 2 | 3 | 10 |
PT 2 | 2 | 3 | 1 | 13 |
PT 3 | 3 | 1 | 2 | 13 |
Ấn dấu = ta được a=3, b=2, c=1 (trên màn hình máy tính là x,y,z)
\(BDT\Leftrightarrow2a^4b+2b^4c+2c^4a+3ab^4+3bc^4+3ca^4\ge5a^2b^2c+5a^2bc^2+5ab^2c^2\)
Ta chứng minh được \(ab^4+bc^4+ca^4\ge a^2b^2c+a^2bc^2+ab^2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
\(VT=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ac}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=VP\)
Vậy ta cần chứng minh \(2a^4b+2b^4c+2c^4a+2ab^4+2bc^4+2ca^4\ge4a^2b^2c+4a^2bc^2+4ab^2c^2\)
\(\Leftrightarrow\sum_{cyc}\left(2c^3+bc^2-b^2c+ac^2-a^2c+3ab^2+3a^2b\right)\left(a-b\right)^2\ge0\)
Dấu "=" xảy ra khi \(a=b=c\)
BĐT cần chứng minh tương đương:
\(\dfrac{a}{a+\sqrt{3a+bc}}+\dfrac{b}{b+\sqrt{3b+ca}}+\dfrac{c}{c+\sqrt{3c+ab}}\le1\)
Ta có:
\(\dfrac{a}{a+\sqrt{3a+bc}}=\dfrac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+\sqrt{\left(a+b\right)\left(c+a\right)}}\le\dfrac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)
\(=\dfrac{a}{a+\sqrt{ab}+\sqrt{ac}}=\dfrac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự:
\(\dfrac{b}{b+\sqrt{3b+ca}}\le\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
\(\dfrac{c}{c+\sqrt{3c+ab}}\le\dfrac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng vế:
\(\dfrac{a}{a+\sqrt{3a+bc}}+\dfrac{b}{b+\sqrt{3b+ca}}+\dfrac{c}{c+\sqrt{3c+ab}}\le\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)