Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\left(đkxđ:x\ne-1;-4;-6;3\right)\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x+6\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{4}{3}+\dfrac{1}{x-3}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)
\(\Leftrightarrow\dfrac{-4}{\left(x+1\right)\left(x-3\right)}=\dfrac{4}{3}\)
\(\Leftrightarrow\left(x+1\right)\left(3-x\right)=3\)
\(\Leftrightarrow2x-x^2+3=3\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\left(tm\right)\)
b)\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-y^2-4y-4-7=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Mà x,yEN*=>x-y-1<x+y+3
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y-1=1\\x+y+3=7\end{matrix}\right.\\\left\{{}\begin{matrix}x-y-1=-7\\x+y+3=-1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy ...
\(\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{9}{\left(x-3\right)\left(x+6\right)}=\dfrac{4}{3}\)
=> \(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{1}{x-3}-\dfrac{1}{x+6}=\dfrac{4}{3}\)
=> \(\dfrac{1}{x+1}-\dfrac{1}{x+6}-\dfrac{1}{x-3}+\dfrac{1}{x+6}=0\)
=> \(\dfrac{1}{x+1}-\dfrac{1}{x-3}=0\)
Ma \(\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\)
=> pt vo nghiem
\(\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}-\dfrac{1}{x+3}+\dfrac{1}{x+6}=\dfrac{4}{3}\)
=> \(\dfrac{1}{x+1}-\dfrac{1}{x+3}=\dfrac{4}{3}\)
=> \(\dfrac{2}{\left(x+1\right)\left(x+3\right)}=\dfrac{4}{3}\)
=> 4(x+1)(x+3)=6
=> 4(x2+4x+3)=6
=> 4x2+16x+6=0
=> (4x2+16x+16)-10=0
=> (2x+4)2=10
=> \(\left[{}\begin{matrix}2x+4=\sqrt{10}\\2x+4=-\sqrt{10}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-4}{2}\\x=\dfrac{-\sqrt{10}-4}{2}\end{matrix}\right.\)
Câu 2:
ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)
\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)
\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)
\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)
\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)
Vậy \(S=\left\{-1\right\}\)
a) \(x^3-2x^2-5x+6=0\)
\(x^3-x^2-x^2+x-6x+6=0\)
\(x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2-x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x^2-2x+3x-6=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\left(x+3\right)\left(x-2\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\left\{2;-3\right\}\end{cases}}\)
\(a,x^3-2x^2-5x+6=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(x^2-x\right)-\left(6x-6\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^2-3x\right)+\left(2x-6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x-3\right)+2\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\left(h\right)x+2=0\left(h\right)x-3=0\)
\(\Leftrightarrow x=1\left(h\right)x=-2\left(h\right)x=3\)
Vậy \(x\in\left\{-2;1;3\right\}\)
P/S: (h) là hoặc nhé
a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
⇔ \(6x^2-5x+3=2x-9x+6x^2\)
⇔ \(6x^2-5x+3-6x^2+9x-2x=0\)
⇔ \(2x+3=0\)
⇔ \(2x=-3\)
⇔ \(x=-\dfrac{3}{2}\)
b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)
⇔ \(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)
⇔ \(12x-92-8\left(4x+1\right)=0\)
⇔ 12x - 92 - 32x - 8 = 0
⇔ -100 - 20x = 0
⇔ 20x = -100
⇔ x = -100 : 20
⇔ x = -5
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
a,\(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)
=> \(\frac{12x}{12}-\frac{\left(5x+2\right)2}{12}=\frac{\left(7-3x\right)3}{12}\)
=>\(\frac{12x-10x-4}{12}=\frac{21-9x}{12}\)
=>(khử mẫu)
=>\(12x-10x-4=21-9x\)
=>11x=25
=>x=25/11
b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)
=>30x+9=36+32x+24
=>32x+60=30x+9
=>2x=-51
=>x=-51/2
c: \(\Leftrightarrow2x-3\left(2x+1\right)=x+6x\)
=>7x=2x-6x-3
=>7x=-4x-3
=>11x=-3
=>x=-3/11
d: \(\Leftrightarrow4\left(x+2\right)-6x=3\left(1-2x+1\right)\)
=>4x+8-6x=3(-2x+2)
=>-2x+8+6x-6=0
=>4x+2=0
=>x=-1/2
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
\(\text{a) }\dfrac{3}{x^2+5x+4}+\dfrac{2}{x^2+10x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+3x-18}\\ ĐKXĐ:x\ne-1;x\ne-3;x\ne-4;x\ne-6\\ \Rightarrow\dfrac{3}{x^2+4x+x+4}+\dfrac{2}{x^2+6x+4x+24}=\dfrac{4}{3}+\dfrac{9}{x^2+6x-3x-18}\\ \Rightarrow\dfrac{3}{x\left(x+4\right)+\left(x+4\right)}+\dfrac{2}{x\left(x+6\right)+4\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{x\left(x+6\right)-3\left(x+6\right)}\\ \Rightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}=\dfrac{4}{3}+\dfrac{9}{\left(x-3\right)\left(x+6\right)}\)\(\Rightarrow\dfrac{1}{x+1}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}=\dfrac{4}{3}+\dfrac{1}{x-3}-\dfrac{1}{x+6}\\ \Rightarrow\dfrac{1}{x+1}-\dfrac{1}{x+6}-\dfrac{1}{x-3}+\dfrac{1}{x+6}=\dfrac{4}{3}\\ \Rightarrow\dfrac{1}{x+1}-\dfrac{1}{x-3}=\dfrac{4}{3}\\ \Rightarrow\dfrac{3\left(x-3\right)}{3\left(x+1\right)\left(x-3\right)}-\dfrac{3\left(x+1\right)}{3\left(x+1\right)\left(x-3\right)}=\dfrac{4\left(x+1\right)\left(x-3\right)}{3\left(x+1\right)\left(x-3\right)}\\ \Rightarrow3x-9-3x-3=4\left(x^2-2x-3\right)\\ \Leftrightarrow4x^2-8x-12=-12\\ \Leftrightarrow4x^2-8x=0\\ \Leftrightarrow4x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)Vậy phương trình có tập nghiệm \(S=\left\{0;2\right\}\)