Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow3x^2+x>3\left(x^2-4\right)\)
=>x>-12
b: \(\Leftrightarrow5x^2-x+20x-4>5x^2+16x+2\)
=>19x-4>16x+2
=>3x>6
hay x>2
a: \(\Leftrightarrow2x^2+4x+4>x^2+4x+4\)
=>x2>0
hay x<>0
b: \(\Leftrightarrow x^2+6x+8-\left(x^2+6x-16\right)-26>0\)
\(\Leftrightarrow x^2+6x-18-x^2-6x+16>0\)
=>-2>0(vô lý)
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
\(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}4x-1>0\Leftrightarrow4x>1\Leftrightarrow x>\frac{1}{4}\\x^2+12>0\Leftrightarrow x^2>-12\Leftrightarrow x>12\\-x+4>0\Leftrightarrow-x>-4\Leftrightarrow x< 4\end{cases}}\)
Để \(\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\Leftrightarrow\hept{\begin{cases}4x-1>0\\-x+4>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4x>1\\-x>-4\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 4\end{cases}\Rightarrow}\frac{1}{4}< x< 4}\)
Vậy \(\frac{1}{4}< x< 4\)
\(a,3x-2\ge x+4\) => \(2x\ge6\)=>\(x\ge3\)
a)(x-1)(x-4)>0
<=>x-1 và x-4 cùng dấu
TH1:\(\int^{x-1>0}_{x-4>0}\Rightarrow\int^{x>1}_{x>4}\Rightarrow x>4\) (1)
TH2:\(\int^{x-1<0}_{x-4<0}\Rightarrow\int^{x<1}_{x<4}\Rightarrow x<1\) (2)
Từ (1);(2) suy ra x<1 hoặc x>4 thì (x-1)(x-4)>0
b)(x+2)(x-3)<0
<=>x+2 và x-3 trái dấu
TH1:x+2<0 và x-3>0
=>x<-2 và x>3
=>3<x<-2 (vô lí,loại)
TH2:x+2>0 và x-3<0
=>x>-2 và x<3
=>-2<x<3 (chọn)
Vậy -2<x<3 thì (x+2)(x-3)<0