K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2019

\(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)

\(=\frac{2^{12}.\left(3^5-3^4\right)}{2^{12}.\left(3^6+3^5\right)}\)

\(=\frac{3^5-3^4}{3^6+3^5}=\frac{3^4.\left(3-1\right)}{3^5\left(3+1\right)}\)

\(=\frac{3^4.2}{3^5.4}=\frac{3^4.2}{3^4.3.4}=\frac{2}{12}=\frac{1}{6}\)

P/s: Hoq chắc ạ (: Ms lp 6 lm đại

5 tháng 2 2019

\(\frac{x}{2}=\frac{y}{3}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}\)(1)

\(\frac{y}{4}=\frac{z}{5}\)

\(\Leftrightarrow\frac{y}{12}=\frac{z}{15}\)(2)

Từ (1) (2)

 \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.8\\y=2.12\\z=2.15\end{cases}\Rightarrow}\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

4 tháng 9 2017

đề bài bạn ơi

24 tháng 10 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x.y.z}{2.3.5}=\frac{-30}{30}=-1\)

\(\Rightarrow\)\(x=-1.2=-2\)

\(\Rightarrow\)\(y=-1.3=-3\)

\(\Rightarrow\)\(z=-1.5=-5\)
 

24 tháng 10 2017

x=-2

y=-3

z=-5

16 tháng 7 2015

 ta có:  2x/3 = 3y/4 = 4z/5 
=>2x/3 . 1/12 = 3y/4.1/12 = 4z/5.1/12 <=>x/18 = y/16 = z/15 

Áp dụng t/c của dãy tỉ số = nhau, ta có: 

 x/18 = y/16 = z/15 = (x+y+z)/(18+16+15) = 49/49 = 1 

Khi đó:  x = 18

 y = 16

 z = 15

16 tháng 7 2015

ta có:  2x/3 = 3y/4 = 4z/5 
=>2x/3 . 1/12 = 3y/4.1/12 = 4z/5.1/12 <=>x/18 = y/16 = z/15 

Áp dụng t/c của dãy tỉ số = nhau, ta có: 

 x/18 = y/16 = z/15 = (x+y+z)/(18+16+15) = 49/49 = 1 

Khi đó:  x = 18

 y = 16

 z = 15

10 tháng 4 2020

Tí ăn xong giải tiếp

10 tháng 4 2020

Câu 3a này cái cuối là 1/2018.2020 mới đúng chứ

23 tháng 10 2016

a ) \(\frac{3x+1}{5y+2}=\frac{6x+3}{10y+6}\)

\(\Leftrightarrow\left(3x+1\right).\left(10y+6\right)=\left(5y+2\right).\left(6x+3\right)\)

\(\Leftrightarrow30xy+18x+10y+6=30xy+15y+12x+6\)

\(\Leftrightarrow6x-5y=0\)

kHÔNG CÓ X,Y THÕA MÃN

cÂU B TƯƠNG TỰ

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

2 tháng 8 2016

a. \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(xy=54\Rightarrow2k3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k\in\left\{3;-3\right\}\)

\(k=3\Rightarrow x=6;y=9\)

\(k=-3\Rightarrow x=-6;y=-9\)

b.\(\frac{x}{5}=\frac{y}{3}=k\Rightarrow x=5k;y=3k\)

\(\Rightarrow\left(5k\right)^2-\left(3k\right)^2=4\Rightarrow25k^2-9k^2=4\)

\(\Rightarrow16k^2=4\Rightarrow k^2=\frac{1}{4}\Rightarrow k\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\)

\(k=\frac{1}{2}\Rightarrow x=\frac{5}{2};y=\frac{3}{2}\)

\(k=-\frac{1}{2}\Rightarrow x=\frac{-5}{2};y=\frac{-3}{2}\)

c.\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

\(\Rightarrow x=20,y=30,z=42\)

d.\(\frac{x^2}{9}=\frac{y^2}{16}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\};y^2=64\Rightarrow y\in\left\{8;-8\right\}\)