K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

12 tháng 10 2020

a) 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x

Dấu "=" xảy ra khi x = 1

=> GTLN của bthuc = -3 <=> x = 1

b) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x

Dấu "=" xảy ra khi x = -2

=> GTLN của bthuc = 4 <=> x = -2

c) -9x2 + 24x - 18 = -9( x2 - 8/3x + 16/9 ) - 17 = -9( x - 4/3 )2 - 17 ≤ -17 ∀ x

Dấu "=" xảy ra khi x = 4/3

=> GTLN của bthuc = -17 <=> x = 4/3

d) 4x - x2 - 1 = -( x2 - 4x + 4 ) + 3 = -( x - 2 )2 + 3 ≤ 3 ∀ x

Dấu "=" xảy ra khi x = 2

=> GTLN của bthuc = 3 <=> x = 2

e) 5 - x2 + 2x - 4y2 - 4y

= -( x2 - 2x + 1 ) - ( 4y2 + 4y + 1 ) + 7

= -( x - 1 )2 - ( 2y + 1 )2 + 7 ≤ 7 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = -1/2

=> GTLN của bthuc = 7 <=> x = 1 ; y = -1/2

14 tháng 8 2018

a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2

Vậy MinA=2 \(\Leftrightarrow\)x=2

b) B= -(x-1)2-(2y+1)2+7 \(\le\)7

Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)

Vậy MaxB=7 ....

14 tháng 8 2018

cảm ơn bạn nha

22 tháng 6 2016

a) A=-(x2-4x-7)=\(-\left[\left(x-2\right)^2-11\right]=-\left(x-2\right)^2+11\)

ta có -(x-2)2 \(\le\)0

-> -(x-2)2+11 \(\le\)11

--> A\(\le\)​11

vậy GTLN của A là 11

b) B= - (x2-5x+127)= - (x-5/2)2-483/4

c) C= - (x2+4x) = - (x+2)2+4

27 tháng 6 2019

2.) A=x2-6x+15=(x-3)2+6

Vì (x-3)2>=0 với mọi x 

=> (x-s)2+6>=6 với mọi x

hay A>=6 với mọi x

Dấu = xảy ra <=> x-3=0 <=> x=3

Vậy....

B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10

vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y

6>0

=> (x-2)2+(2y+1) + 6>=6 với mọi x;y

hay B>=6 với mọi x;y

Dấu = xảy ra <=> x-2=0 và 2y+1=0

               <=> x=2 và y=-1/2

Vậy....

27 tháng 6 2019

3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7

vì -(x-2)2<=0 với mọi x

=> -(x-2)2+7<=7 với mọi x

hay A<=7 với mọi x

Dấu = xảy ra <=> x-2=0 <=> x=2

Vậy....

B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7

vì -(x-1)2<=0 với mọi x 

-(3y+1)2<=0 với mọi y

suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y

=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y

hay A<=7 với mọi x, y

Dấu = xảy ra <=> x-1=0 và 3y+1=0

                 <=> x=1 và y=-1/3

vậy...

6 tháng 11 2021

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

8 tháng 11 2021

hk có câu H na bạn?
bạn thiếu câu cuối kìa

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

21 tháng 10 2023

\(A=-x^2+2xy-4y^2+2x+10y-3\)

\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)

\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)

\(B=-4x^2-5y^2+8xy+10y+12\)

\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)

\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)

\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)

=>x=y=5