Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) 4x - x2 + 5
= -x2 + 4x + 5
= -(x2 - 4x + 4 - 4) + 5
= -(x - 2)2 + 9
Ta có: -(x - 2)2 ≤ 0 với ∀x
Nên: -(x - 2)2 + 9 ≤ 9 với ∀x
Dấu "=" xảy ra ⇔ -(x - 2)2 = 0
x - 2 = 0
x = 2
Vậy GTLN của biểu thức trên là 9 khi x = 2
Các câu còn lại bạn cứ dựa vào câu trên mà làm nhé!!!!
Bạn có bị sai đề không bởi vì GTLN phải có dấu trừ trước x2 chứ :v
Trần Việt Hoàng !!! Em xem lại đề nhé! Cô nghĩ là M= - x^2+2xy-4y^2+2x+10y-8
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
2.) A=x2-6x+15=(x-3)2+6
Vì (x-3)2>=0 với mọi x
=> (x-s)2+6>=6 với mọi x
hay A>=6 với mọi x
Dấu = xảy ra <=> x-3=0 <=> x=3
Vậy....
B=x2+4y2-4x+4y+15 = (x2-4x+4)+(4y2+4y+1)+10= (x-2)2+(2y+1)2+10
vì (x-2)2 >= 0 với mọi x ; (2y+1)2>=0 với mọi y
6>0
=> (x-2)2+(2y+1)2 + 6>=6 với mọi x;y
hay B>=6 với mọi x;y
Dấu = xảy ra <=> x-2=0 và 2y+1=0
<=> x=2 và y=-1/2
Vậy....
3) A= -x2+4x+3= -(x2-4x+4)+7 = -(x-2)2+7
vì -(x-2)2<=0 với mọi x
=> -(x-2)2+7<=7 với mọi x
hay A<=7 với mọi x
Dấu = xảy ra <=> x-2=0 <=> x=2
Vậy....
B=-x2-9y2+2x-6y+5= -(x2-2x+1)-(9y2+6y+1)+7 = -(x-1)2-(3y+1)2+7
vì -(x-1)2<=0 với mọi x
-(3y+1)2<=0 với mọi y
suy ra: -(x-1)2-(3y+1)2<=0 với mọi x;y
=> -(x-1)2-(3y+1)2+7<=7 với mọi x;y
hay A<=7 với mọi x, y
Dấu = xảy ra <=> x-1=0 và 3y+1=0
<=> x=1 và y=-1/3
vậy...
\(6M=-6x^2+12xy-24y^2+12x+60y-48\)
\(=(-4x^2+12xy+9y^2)+(-2x^2+12x)+(-15y^2+60y)-48\)
\(=-(2x-3y)^2-2(x^2-6x+9)-15(y^2-4y+4)+30\)
\(=-(2x-3y)^2-2(x-3)^2-15(y-2)^2+30\le30\)
Dấu " = " xảy ra khi : 2x - 3y = 0 ; x - 3 = 0 , y - 2 = 0 => \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy GTLN của M là \(\frac{30}{8}=5\)tại x = 3 , y = 2
Chúc bạn học tốt :>
a) A = 4x2 + 4x +11
=> (2x)2+2.2x+1+11-1
=> (2x+1)2+10
do (2x+1)2 \(\dfrac{>}{ }\) 0 vs mọi x
(2x+1)2 +10 \(\dfrac{>}{ }\)10 vs mọi x
GTNNA=10 khi
2x+1=0
=>x=\(\dfrac{-1}{2}\)
a)\(A=4x^2+4x+11\)
\(\Leftrightarrow A=4x^2+4x+1+10\)
\(\Leftrightarrow A=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\)
Nên \(\left(2x+1\right)^2+10\ge10\)
Vậy GTNN của A=10 khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
b) \(B=2x-2x^2-5\)
\(\Leftrightarrow B=-2x^2+2x-5\)
\(\Leftrightarrow B=-2x^2+2x-\dfrac{1}{2}-\dfrac{9}{2}\)
\(\Leftrightarrow B=-\left(2x^2-2x+\dfrac{1}{2}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
Do đó \(-\left(x-\dfrac{1}{2}\right)^2\le0\)
Nên \(-\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)
Vậy GTLN của \(B=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=4x^2-12x\)
\(\Leftrightarrow C=4x^2-12x+9-9\)
\(\Leftrightarrow C=\left(4x^2-12x+9\right)-9\)
\(\Leftrightarrow C=\left(2x-3\right)^2-9\)
Vì \(\left(2x-3\right)^2\ge0\)
Nên \(\left(2x-3\right)^2-9\ge-9\)
Vậy GTNN của \(C=-9\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
d) \(D=5-x^2+2x-4y^2-4y\)
\(\Leftrightarrow D=7-1-1-x^2+2x-4y^2-4y\)
\(\Leftrightarrow D=-x^2+2x-1-4y^2-4y-1+7\)
\(\Leftrightarrow D=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(\Leftrightarrow D=-\left(x-1\right)^2-\left(2y+1\right)^2+7\)
Vậy GTLN của \(D=7\) khi \(\left\{{}\begin{matrix}x-1=0\Leftrightarrow x=1\\2y+1=0\Leftrightarrow y=\dfrac{-1}{2}\end{matrix}\right.\)